Telematics: Insights to actions

Panel for Data for Sustainability & Success

Steve Hemenway, Integrated Partnerships, Verizon Connect August 2023

6 ways telematics supports sustainability

Make an impact

Use fuel efficiently

Plan ahead

Coach Drivers

Maintain equipment & vehicles

Go completely paperless

The right data for the right actions

By automating data gathering, a fleet manager can get to key issues fast and prepare reports for the whole fleet operation.

Actionable data benefits...

- Monitor speeding, idling, harsh braking and other driver behaviors
- Track essential business details
- Analyze operation to improve routes, labor costs, asset utilization, and downtime
- Accurately plan for capacity and reduce overtime
- Review progress toward achieving and maintaining KPIs, budgets or goals
- Near real-time planning and analysis to measure actual performance against plan

Variety of data categories available

Geofences

! Alerts

Electric Vehicles

🖺 Vehicles

O Video

S. Users

⇔ Groups

:= Logs

Work Orders

Diagnostics

M Assets

Assignments

Safety

Data 'on the move'

Fleet Ops + Fleet data surfaces in Systems multiple forms including pre-built, BYO, or partner solutions Telematics Device Asset Trackers Video Cameras Sensors

Pre-built reports, alerts & dashboards

Sustainability

Productivity

Daily Cost analysis

Sensor activity

Geofence

Work orders

Travel stops

Time spent User activity

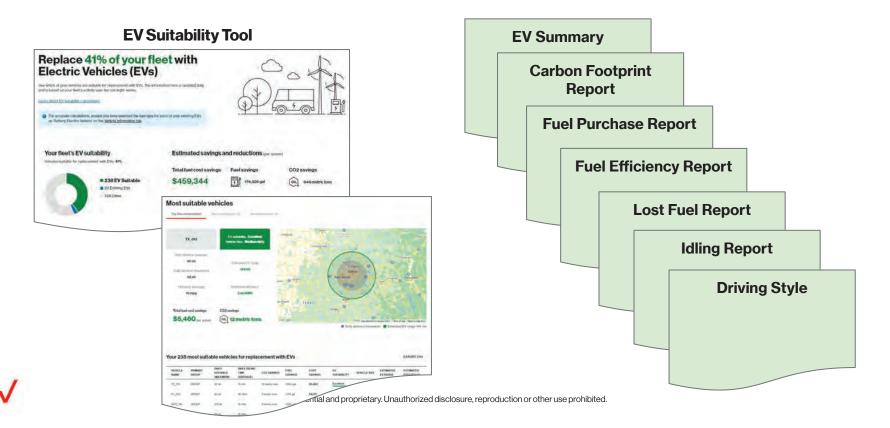
Emissions

EV Suitability
Carbon Footprint

Costs

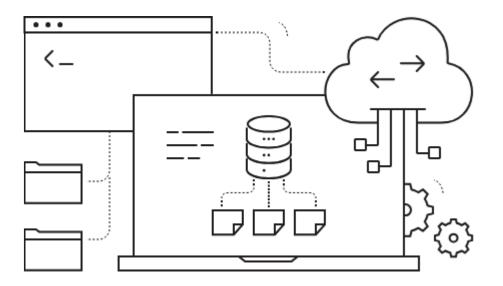
Maintenance Labor Fuel Costs Idling Safety

Compliance


Video
Harsh Driving
Exception
Speeding
Driving Style

Driver log
Inspections
Hours of Service

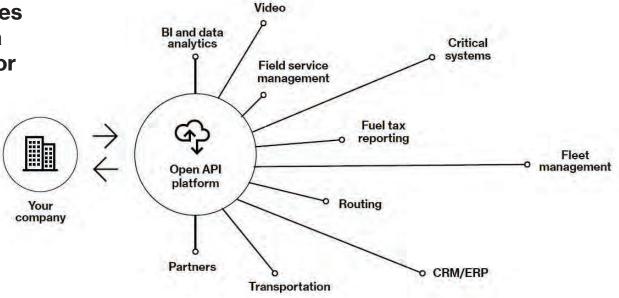
Data available in configurable reports, graphs, maps, and dashboards


Pre-built data views to inform plans

Developer Portal

Allows customers & solution partners to access fleet data for development of ...

- Fleet applications
- Data commingling
- Analytics
- Process automation
- Reports and alerts
- GIS
- Consulting services


Simplified data sharing to increase speed to decision-making

BYO - Integrate data into your business ops

There are many use cases where fleets ingest data into business systems for specific purposes.

- Planning
- Preparedness
- Procurement
- Performance
- People
- Paperless

Solution partners with more tools and insights

- Growing industry of thousands of integrated solution providers with highly specialized capabilities for electrification, GIS, M&R, ESG, and consulting services
- Many pre-integrated with telematics for easy fleet data access.

We're in this together

New fleet challenges pose new questions

- Community has wealth of experience and fleet leaders to share insights and mentor talent
- Large ecosystem of technology partners and solutions

Resources

22 Reports for Fleets

Data Privacy for Fleet Managers

Developer Portal

Electric Vehicle Fleet Solutions

Short Term Needs A Strategic Outlook

SMART AUTOMATION & COSTS RECOVERY

Strategic Outlook

Business Intelligence (BI) Maturity Levels

Management Restructuring

Level A Unorganized

- As needed data reports
- Heavy spreadsheet usage
- Staff Experience Single point of failure

Level B

Operational Reports

- Uses data from TransactionalSystems
- Manual Data Reporting
- True Reporting on "What's Happening"

Level C

Management Dashboards

- Executive Level Report Needs
- Agency Driven
 Dashboard
- Better Insights/Trends

Level D

Service Analysis

- Business User Driven Analysis
- Data Exploration across the Enterprise
- ➤ In-depth
 Automation

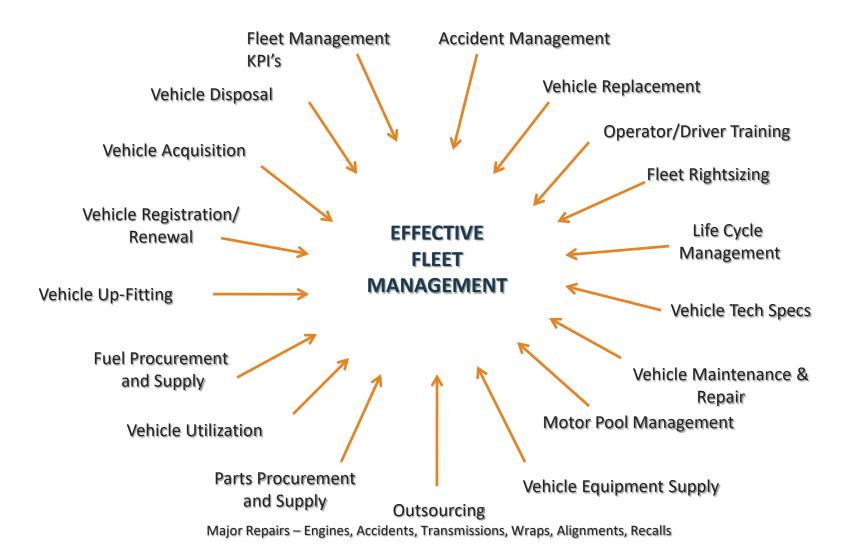
Level E

Data Driven Solutions

- Predictive
 Analysis
- Big Data Core Capabilities
- Critical Points

07.19.2022

Automation Strategy



Test Scenario

11.09.2023

Key Fleet Management Activities

Cost Recovery Method

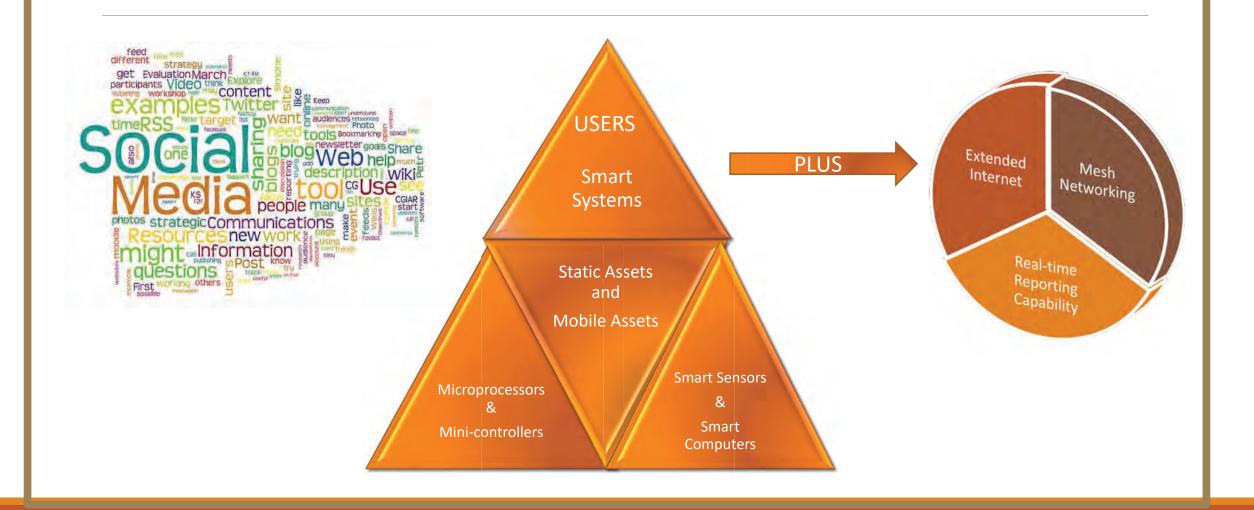
Sold Goods on Credit at \$2,50,000

Company A

Mr. Y

Actual Price of Cost of Goods Sold was \$ 200,000

> So, Remaining 50000 will be consider as an Income



11.09.2023

Smart City Concept Connectivity

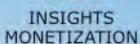
Intelligent Infrastructure

BIG DATA BUSINESS MODEL MATURITY INDEX

Measures degree to Which organizations have Integrated data and analytics into their business models

Key Business Processes

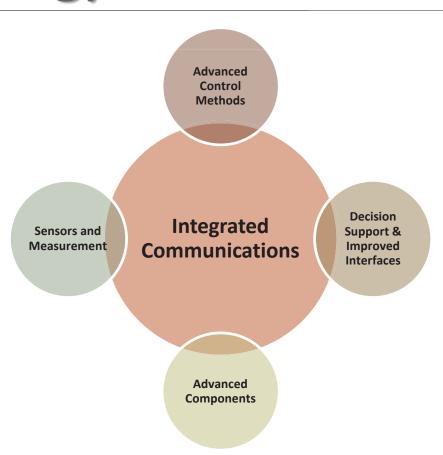
> Economic Drivers


BUSINESS INSIG MONITORING

BUSINESS INSIGHTS Prescriptive Recommendations

BUSINESS

BUSINESS



The Technology Affect

V2V/V2C/V2I

- Vehicle to Vehicle
- Vehicle to Command
- Vehicle to Infrastructure

At DPW-FMA
We must answer the
demand for service
Thru Connectivity
and Smart
Innovation

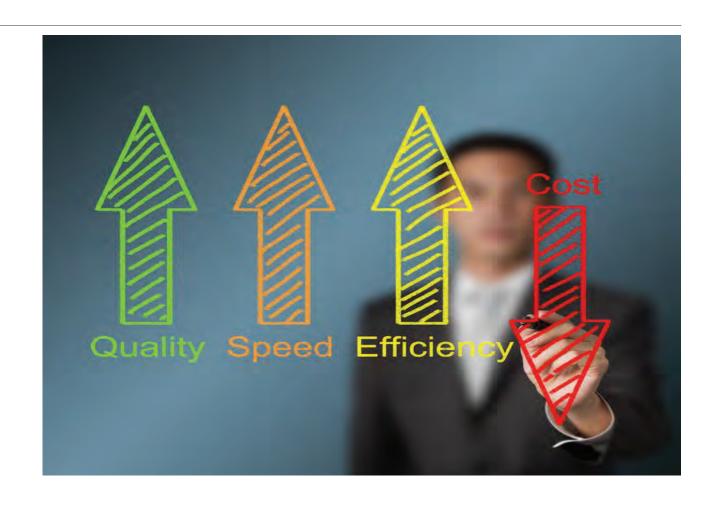
Where are we going

Pilot Program

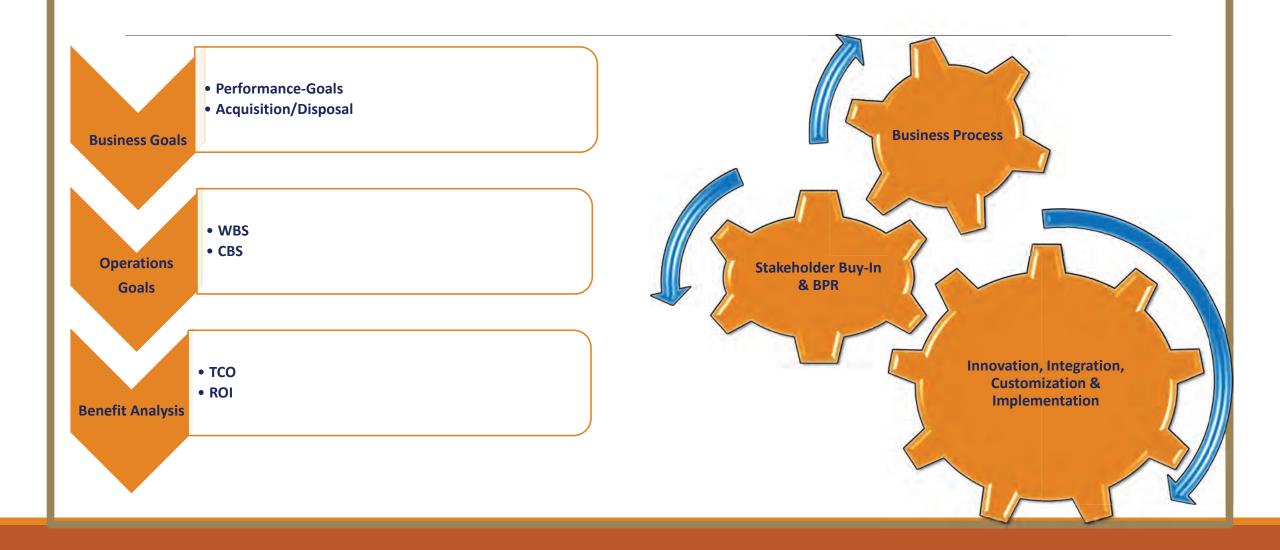
Timeline

- Start to finish
- Move-in vs. move-up

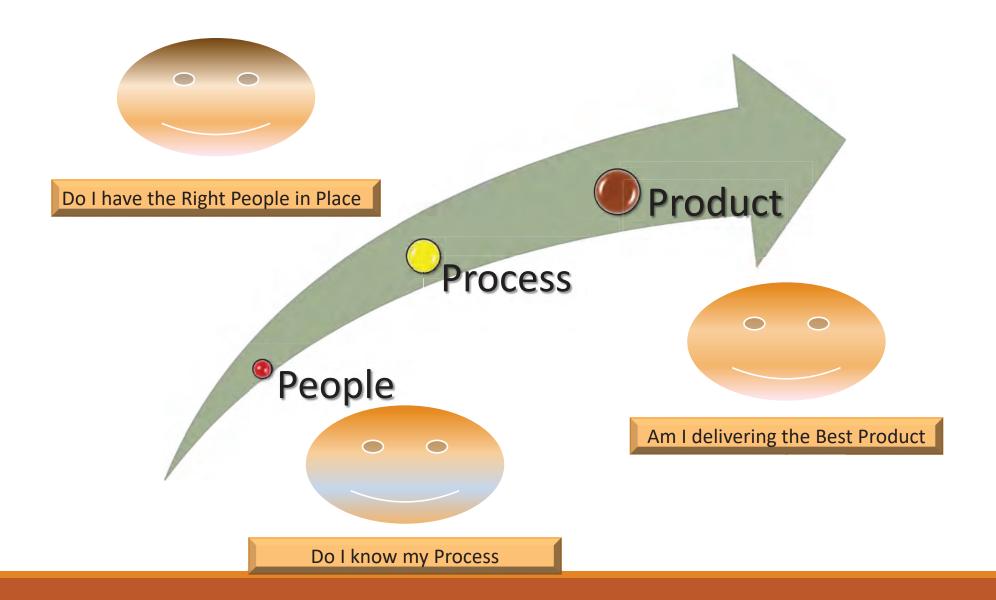
Effective Efficiency


- Tracking standards
- Industry measurements

Contractual Needs


- Transition Needs
- Service offerings

Benchmarking (setting the pace)


- Smart Business
- Customization

What is your Business Data Management Process?

Criticality of Operations

USING TELEMATICS TO IMPROVE OPERATIONS & PRODUCTIVITY

GPS-KPI'S DRIVES PERFORMANCE

- Regardless of the metric being measured; we must first accumulate the data
- The number of KPIs possibilities are endless
- We must first decide what data you're looking to identify
- Why are we measuring each of the metrics and how do we calculate the impact of results improvement?
- Once the metric is determined we simply pull together the variables, calculate the KPI result and know exactly where **YOU** are

USING TELEMATICS AND MAKING DATA DRIVEN DECISIONS



Maximize Uptime

Minimize Waste

Create Buy-in

CASE STUDY ON THE DEPLOYMENT OF TELEMATICS

• Challenge

To deploy a telematics solutions that would minimize risk, cost effective, plug and play technology, expandable open API, customizable, that improves productive, and lower our carbon footprint, while lowering fuel and operational costs.

• Solution

238 Geotab units were installed in electric, hybrids, and gas cars & trucks.
Units deployed in following Departments: Juvenile Court, Tax Assessors Office, Water Department, DOT. and Senior Services.

Results

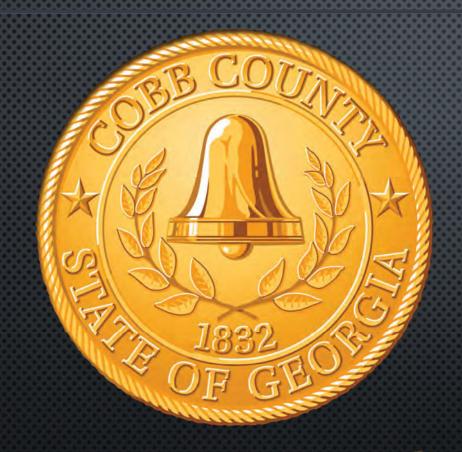
Implementing the Driver Safety scorecard improved our average fleet safety by 25%. This reduced accidents, lowered the number of high-risk drivers by 87% and improved overall driver safety.

During the implementation stage we had over 20 incidents where a vehicle was in motion without a seatbelt fastened. After just 4 weeks of coaching in action, 100% of all employees were using them seatbelts.

Cost savings was another benefit of Geotab telematics deployment. Maintenance/repair cost were cut approximately 15%. With a Fleet that travels over 5 million miles a year we had to address excessive idling. Geotab has allowed us to reduce over 1 1/2-hour idle time per vehicle. Equates to over 20,000 gallons of fuel saves and \$50,000 in cost savings. The reduction in fuel usage has directly impacted our overall operational cost and has reduced over 342,000 lbs. of C02 emissions.

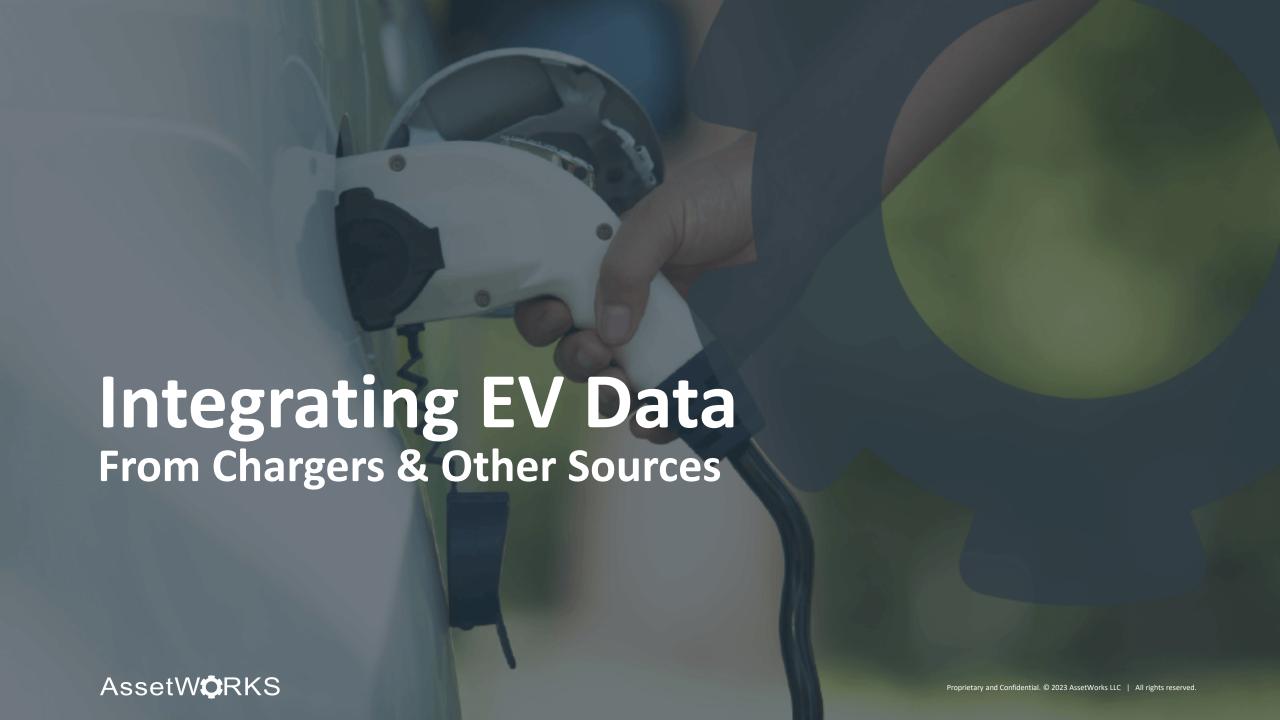
Cobb County...Expect the Best!

AL CURTIS


DIRECTOR,

COBB COUNTY

FLEET


MANAGEMENT

MARIETTA, GA

Cobb County...Expect the Best!

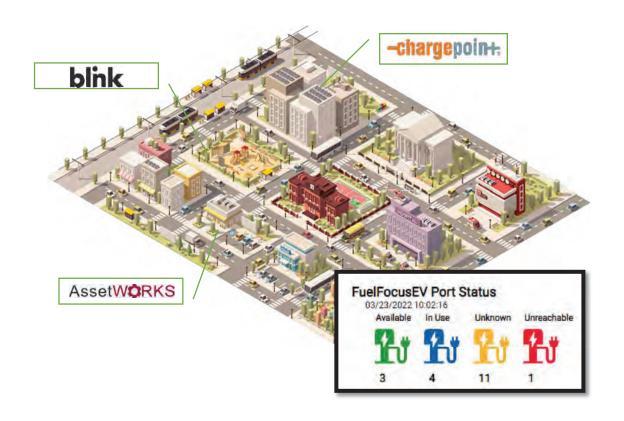
FLEET
ADMINISTRATOR,
COBB COUNTY
FLEET
MANAGEMENT
MARIETTA, GA

In 2022, OEM Order Books Opened for EVs Across All Duty-Cycles

Procurement is not the finish line

Gasoline asset and fuel mgmt. requirements apply to EVs too

Key considerations:


- Managing and tracking fuel costs
- Tracking vehicle lifecycle costs
- Billing back to internal departments
- Addressing both internal and external charging transactions

Fleet Charging Offerings

Vision and Direction

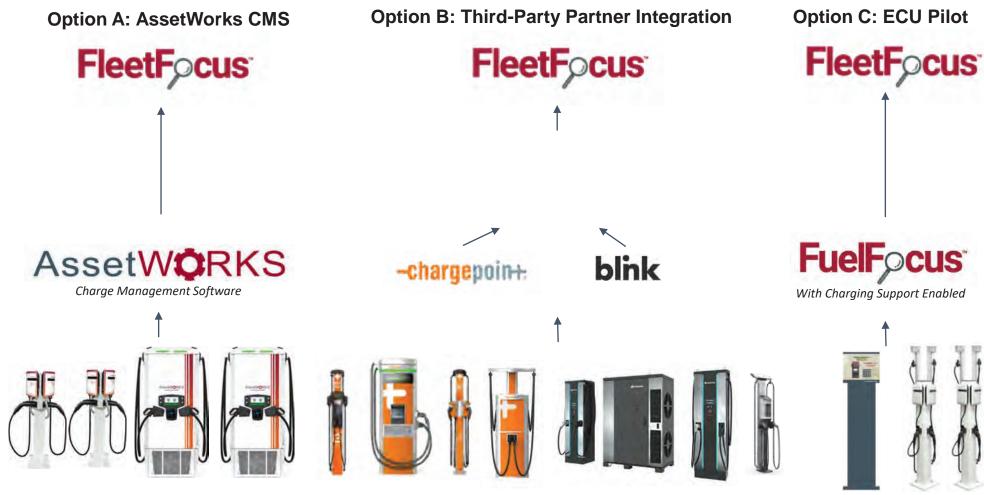
- Multi-network, multi-solution environments
- Deploying unique, tailored solutions for:
 - Fleet
 - → Light-Duty
 - ---> Heavy-Duty
 - ---> Off-Road
 - Public
 - Workplace
 - Advanced use-cases (V2X, DERS)

Electricity is a fuel unlike any other....

Different sources

- Grid
- Distributed resources (e.g., solar)

Different rates


- Each facility may have a different utility rate structure
 - Rates can change seasonally
 - Locations with dedicated meters may use special EV-only rates

Average cost per KWH will change based on:

- Time-of-use
- Peak demand at each meter every month
- Other factors

Integration Examples

Other Commercial Fuel Upload Options

M5

- Interface Module: Load fuel transactions from file. Requires standard Interface License.
- ◆ <u>API Module:</u> Commercial fuel can be imported via AssetProductIssue with license.
- Smart App Commercial Fuel Entry:
 Operators use manual entry in the app which interfaces into FleetFocus with license.

FA

- Fuel Data Load: Load transactions from file. No license required.
- <u>API Module:</u> Commercial fuel can be imported via AssetProductIssue with license.
- Operators use manual entry in the app which interfaces into FleetFocus (license required).

Charger Integration- The Driver Experience

Cost and Usage Analysis- Segmentation

✓ Internal Departments

✓ Asset Class or Individual Vehicles

✓ Location

Addresses and Tracks Variability

- Different Sources
 - Grid
 - Distributed Resources (PV, Co-gen)
- Different Rates
 - Each facility may have a different utility rate structure
 - Rates can change seasonally
- Average cost per KWH will change based on changes in usage due to
 - → Time-of-use
 - --- Overall demand
 - --- Other factors
- Very possible to spend more electricity than gas/diesel

See Impact of Management Decisions

Despite cost complexity, can manage many aspects to shape price

Can Control

- Time of charging
- Speed of charging (power)
- Utility rate type
- Electricity source
- Peak demand

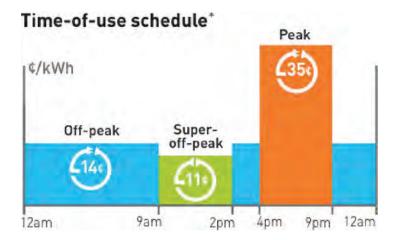
Can't Control

- Number of shifts
- Duty-cycle requirements
- Utility rate design

Consider Different 'Types' of Electricity

180KW off grid DC Fast Charger and genset supporting transit fleet ops

Fuel Cost Variability


Charging costs are difficult to track without software and impossible to analyze/segment without integration. Key cost components are generally:

Time-of-Use Rates

- Vary by time and can increase the costs by 3x
- Encourages charge scheduling

Peak Demand Charges

- Tripped by peak electricity use in a 15- or 30minute period.
- Can be majority of electricity cost
- Requires additional hardware to monitor
- Encourages load balancing

Light Duty Fuel Cost Example

- **⋄** Ten F -150s (300mile range)
- Need to fill from 15% to 100% (153.6 KW)
- Takes 8 hours (80amps)
- Assume Demand Holiday Rate

Scheduled Charging Scenario with 50% Reduction in Costs

Bad Time of Use Example

	One Truck Cost	Ten Truck Cost		
Time of Use 4-9 PM (\$0.35 per kwh)	\$33.60	\$336.00		
Time of Use 9pm- 12am (\$0.14 per kwh)	\$8.06	\$80.60		
1 Night Total	\$41.66	\$416.60		

Good Time of Use Example

		Ten Truck Cost
Time of Use 9pm- 5am (\$0.14 per kwh)	\$21.50	\$215.00

HD Fuel Cost Example

Example: Fifty Class 8 trucks at a LA area facility using no more than forty 150kw DCFC at a time								
Rate Type	Time of Use	Demand	Total Bill	Cost per kWh	Notes			
Demand Holiday Year 1-5	\$636,364	\$0	\$639,424	\$0.15	Approx. 46% of energy costs from			
Demand Holiday Year 11	\$525,505	\$437,338	\$965,904	\$0.22	demand charges at full imposition in Year 11.			
TOU	\$350,796	\$883,764	\$1,237,621	\$0.28	Approx. 71% of energy costs from demand charges			
Demand Subscription	\$725,817	\$70,964	\$796,781	\$0.18				

AssetWorks Insight- "Mileage May Vary: Time of use and demand rates are difficult to estimate. Actuals may vary significantly from forecast amounts. EV charging at scale is almost impossible to monitor and manage without charging software integrations.

Source: https://cdn.gladstein.org/pdfs/whitepapers/california-fleet-electrification-case-study.pdf

Rate Choice

Example: Fifty Class 8 trucks at a LA area facility using no more than forty 150kw DCFC at a time							
Rate Type	Time of Use	Demand	Total Bill	Cost per kWh	Notes		
Demand Holiday Year 1-5	\$636,364	\$0	\$639,424	\$0.15	Approx. 46% of energy costs from		
Demand Holiday Year 11	\$525,505	\$437,338	\$965,904	\$0.22	demand charges at full imposition in Year 11.		
TOU	\$350,796	\$883,764	\$1,237,621	\$0.28	Approx. 71% of energy costs from demand charges		
Demand Subscription	\$725,817	\$70,964	\$796,781	\$0.18			

Different gas. and diesel blends = Different electricity types & rates

Source: https://cdn.gladstein.org/pdfs/whitepapers/california-fleet-electrification-case-study.pdf

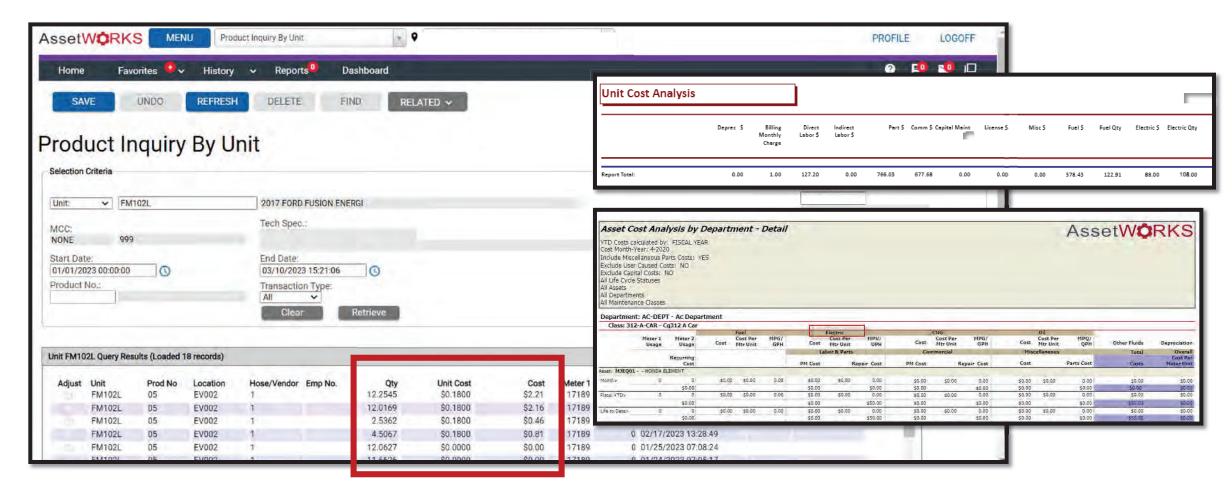
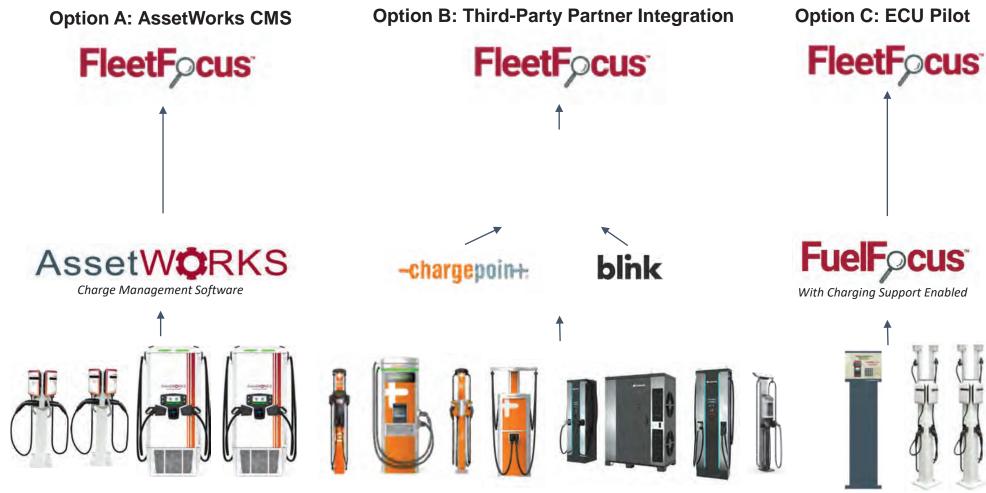
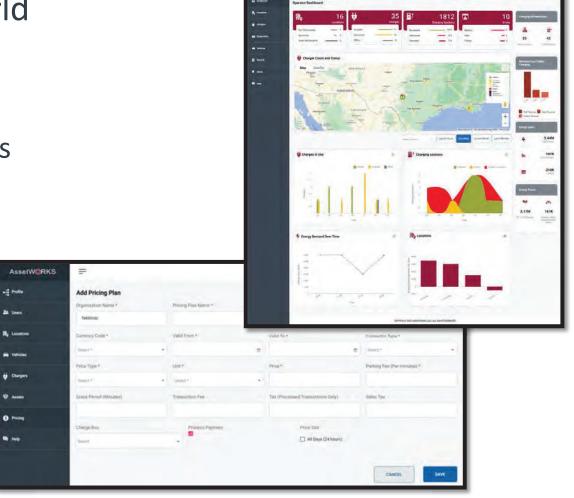

High-Usage Vehicles Are Susceptible to Demand Charges

Table 34. Yard tractor electricity cost analysis results


Scenario	Standard 2- Shift UTR	Extended 2-Shift UTR	Average UTR	Standard 2- Shift UTR	Extended 2- Shift UTR	Average UTR	Standard 2- Shift UTR	Extended 2-Shift UTR	Average UTR	
Utility	SCE			LADWP			SCE			
Pore schedule	TOU-EV-9	TOU-EV-9	TOU-EV-9	TOU A-3	TOU A-3	TOU A-3	TOU-8 Option E	TOU-8 Option E	TOU-8 Option E	
Daily Energy (kWh)	287	341	N/A	287	341	N/A	287	341	N/A	
Dolly Operating Time (hours)	16	19	N/A	16	19	N/A	16	19	N/A	
	3a-8a, 5p-5:45p	6a-8a, 6p-6:45p	N/A	3a-8a, 5p-5:45p	6a-8a, 6p-6:45p	N/A	3a-8a, 5p-5:45p	6a-8a, 6p-6:45p	N/A	
	104,886	124,553	114,720	104,886	124,553	114,720	104,886	124,553	114,720	
	94	166		94	166		94	166		
Energy Charges	\$15,103	\$20,578	\$17,841	\$13,072	\$15,697	\$14,385	\$12,743	\$17,038	\$14,890	
Demona Charges	\$5,370	\$9,482	\$9,482	\$17,337	\$18,487	\$18,487	\$11,869	\$20,958	\$20,958	
Fixed Charges	\$3,061	\$3,061	\$3,061	\$900	\$900	\$900	\$3,061	\$3,061	\$3,061	
Total Cast	\$23,534	\$33,121	\$30,384	\$31,309	\$35,084	\$33,771	\$27,673	\$41,057	\$38,910	
Average Cost	\$0.224	\$0.266	\$0.265	\$0.299	\$0.282	\$0.294	\$0.264	\$0.330	\$0.339	

1 hour difference in charging schedule results in a \$7,000 to \$10,000 difference per truck in annual fuel costs.

Analyze with Existing Reports & Processes



Choose Your Method

Precision Detail with the right CMS

- Configure pricing to match real-world
- Set pricing based on:
 - √ Seasonal utility rates
 - ✓ Locations/Meters/Utility Service Areas
 - √ Type of Charging (AC v DC)
 - √ Specific chargers
 - ✓ Driver behavior

Third Party Charger Integration Process

UPDATEFleetFocus/EAM (if needed)

SCHEDULE the FuelFocusEV implementation with AssetWorks

GATHER charger name and RFID card information.

KICK-OFF
with AssetWorks to
enter interface inputs
and update fuel
settings.

MODIFY
Interface testing if
needed due to past FA
& M5 customization

cLOSE-OUT
after user testing is
complete and the
interface is moved from
test to production

Complete setup can take weeks to a year if updates or customizations are needed.

Closing Thoughts on Integration

- Electricity is complex and difficult to manage without software
- Integrate "when small and early"
- Understand what charging systems your FIMS provider supports and doesn't

Contact Info:

Mike Terreri

Michael.terreri@assetworks.com

Linkedin.com/in/terreri

