

EVSE Communications

OCPP, Modbus and OPC-UA

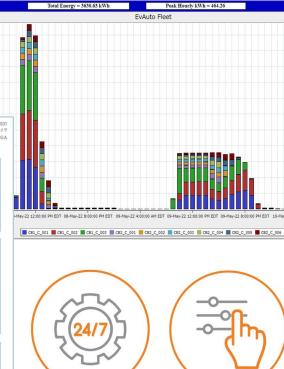
September 1, 2022

Andy Abrams

I'm Fleet biased

Technology:

- Onsite IOT controllers
- Cloud hosted UI
- Any open charger
- Demand management algorithm
- Tridium Niagara Control Software


Delivers:

- Onsite Reliability
- Monitoring and alerting
- Energy cost savings
- Interoperability

Requires:

- Controllable Charger
- Accurate, fast metering charger and mains
- Responsive, fast control signalling
- Connection to EMS, local generation or storage

Security

Cloud-based, closed onsite, or blended control options

Dependability
Keeps EVs charging when internet networks go down

Supports all charger types and energy sources

Flexibility

OCPP 1.6-j

History:

- Started in 2009
- Greenlots, ESB, RWE, G2 mobility and ElaadNL - 2 techs, 2 utilities and a network provider

Technology:

- JSON hosted by Charger
- Charger initiates connection

Delivers:

- Standard communication protocol
- Comms commissioned in factory
 - Network / Authentication
- Charger status
- Electric Utility Cost Savings
- Charger flexibility

My name is JSON

Control:

- Authenication
- "Smart" Charging
 - Set Output
 - Set Default Output

Firmware Update

Meter Readings:

- Volts
- Amps
- Power (kW)
- Session Energy (kWh)
- SoC DCFC

Charger Status:

- Available,
- Reserved,
- Charging,
- Suspended
- Finishing

Information:

- Charger ID
- Charger properties

Configuration Variables

Designed for public charging

Open Charge Point Protocol 1.6

3.3. General views of operation

This section is informative.

The following figures describe the general views of the operations between Charge Point and Central System for two cases:

- 1. a Charge Point requesting authentication of a card and sending charge transaction status,
- 2. Central System requesting a Charge Point to update its firmware.

https://www.openchargealliance.org/

See Diagram on page 25 of 130

Gas Station Use case

Steps:

- Waiting for vehicle
 - = "Available"
- Lift handle "Insert Credit Card
 - = "Reserved"
- Approved "Select Grade"
 - = "Charging"
- Full "Click"
 - = "SuspendedEV"
 - = "Finishing"

Fleet Control issues:

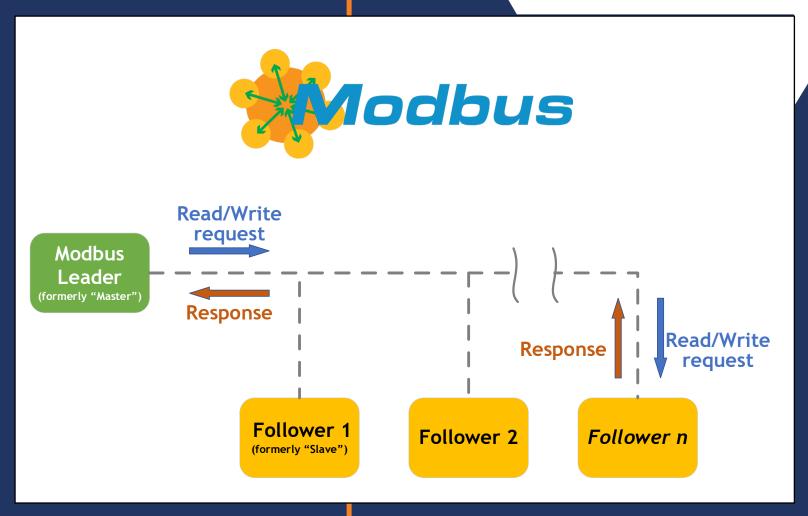
- Meter off between sessions
- Session energy usage
- Cellular isn't as reliable
 - Time delays too

Modbus

History:

- Modicon 1978 OPEN Source
- Evolved
 - RS-232, RS-485, IP
 - Continues to grow

Technology:


- Leader / Follower
- Controller initiates connection
- Boolean, Numeric, String

Delivers:

- Standard communication protocol
- Charger status
- Electric Utility Cost Savings
- Charger flexibility
- Same bus can read meters, etc.
- Flexibility for EVSE manufacturer

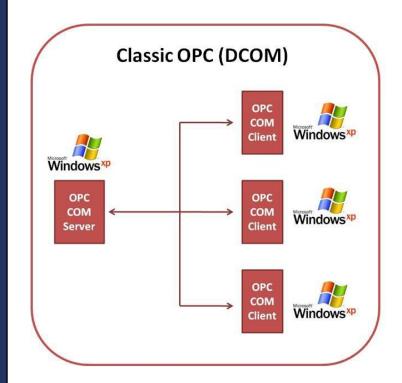
Issues:

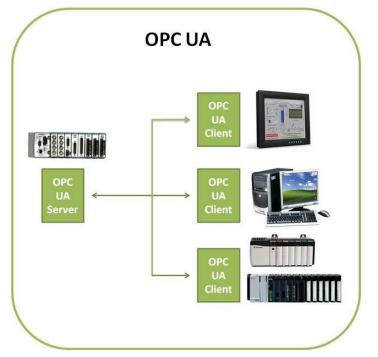
Security / Commissioning

OPC-UA

History:

- Microsoft Office OLE
- Object Linking & Embedding
 - Embed excel, word, etc
- OPC OLE for Process Control
- OPC-UA


Technology:

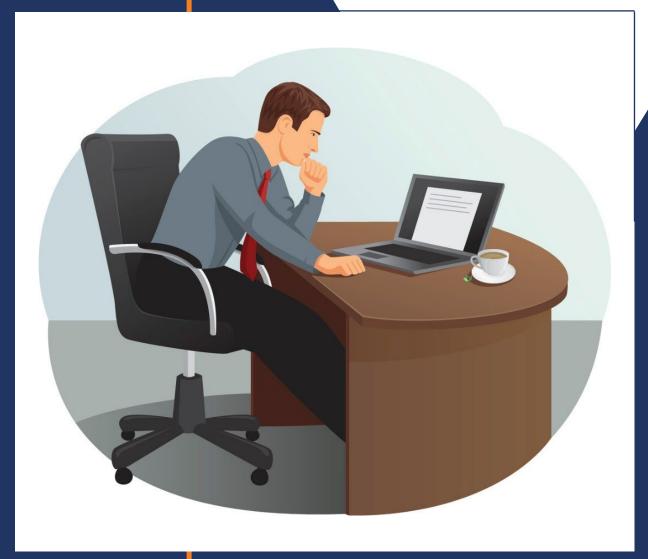

- Controller initiates connection
- Boolean, Numeric, String

Delivers:

- **Standard** communication protocol
- Security
- Charger status
- Electric Utility Cost Savings
- Charger flexibility
- Flexibility for EVSE manufacturer

Is one better?

Public Charging: OCPP


- Any connection / phone home
- Credit Card Transaction
- Always ASAP
- Secure

Captive Fleet (secure): Modbus RTU

- Flexible
- Reliable / Lower cost
 - Low cost cabling
 - No intermediate switching
 - No network switching
 - Flexible
- Open

Captive Fleet (insecure): OPC-UA

- Flexible
- Reliable
- Secure

Andy Abrams

Principal Consultant

(770) 559-1668 andy.abrams@evauto.us

230 Hammond Drive Suite G #28822 Atlanta, GA 30328-9997