

Session #13: Sustainable Fleet Analytical Tools & Information for Fleet Decisions

November 10, 2020

https://www.sustainablefleetexpo.com/

NC STATE UNIVERSITY

2020 Sponsors

NC STATE UNIVERSITY

Next Series Dates & Topics:

November 18: Potential Impacts of Connectivity/Automation Technology
December 02: Idle Reduction an Easy Win
December 09: Green Garage Contest Winners Strategies, Tools and Best Practices
December 16: Change Management to Remove Resistance & Roadblocks

Format

- Q&A at the end
- Submit questions and comments to "Panelists"
- Scheduled for 2:00p-3:30p
- Handout
- Recording

NC STATE UNIVERSITY

Rick Sapienza resapienza@ncsu.edu Phone: 919-515-2788

- Clean Transportation Program Director NC Clean Energy Technology Center at NC State University
- 8 years with NC State
- 30+ years experience including General Motors, Draper Lab and Great Lakes Pulp & Fibre in both engineering and business management roles

Sustainable Fleet Analytical Tools & Information for Fleet Decisions November 10, 2020

2:00-2:05 Rick Sapienza, NCCETC--Welcome & Introduction 2:05-2:15 Carina Soriano, Centralina Clean Fuels Coalition—Clean Cities & Overview 2:15-2:30 Stacy Davis, ORNL National Transportation Research Center—FuelEconomy.gov 2:30-2:45 Patricia Weikersheimer, Argonne National Laboratory—IdleBox Tool 2:45-3:05 Andrew Burnham, Argonne National Laboratory—AFLEET Tool 3:05-3:30 Q&A

Carina Soriano <u>csoriano@centralina.org</u> 704.688.7035

- Clean Cities Co-Coordinator and Planner for Centralina Clean Fuels Coalition/Centralina Council of Governments
- Supports the goal of the Clean Cities program to advance the nation's economic, environmental, and energy security efforts to reduce petroleum consumption in transportation
- Experience includes the Regional Transit Engagement Series, the Regional Freight Mobility Plan, Centralina Clean Fuels Coalition, Planners4Health, Planning and Zoning Administrator for the Town of Marshville, NC
- Bachelor's of International Studies and Master's of Public Administration from UNC Charlotte

Clean Cities Program Overview

Carina Soriano

Co-Coordinator, Centralina Clean Fuels Coalition

Centralina Regional Council

What is Clean Cities? Western North Dakota National network of nearly 100 w Hampshire local Clean Cities coalitions with Syrac -Massachusetts wistone-Teton Rochester Boise Bhode Island thousands of stakeholders Lansing Buffalo Connecticut* Long Island Chicago ewe: NYC Region Sacramento Northern Colorado Northern Indiana New Jersey More than 80% of the U.S. San Francisco Eastern Pennsylvania Ohio Utah Oakland Denver Delaware Greater Indiana W. Virgi population lives within coalition Kansas City Maryland San Jose Bakersfield Southern Colorad Washington DC St. Louis Kentucky boundaries San Luis Obispo Southern East Teones Durham Los Angeles Middle-Phoenix Long Beach Central Western Riverside Oklahon Nearly 500,000 AFVs on the road New Mexico South Care Speinge San Diego Region Bama Georgia Dallas/Ft, Wort North Florida San Antonio utheast Central Florida uston/ Louisiana Galveston outheast Florida * Connecticut Clean Cities Include: - New Haven - Connecticut Southwestern Area U.S. Department of Energy - Capitol Clean Cities (Hartford area) Map Date: 1/6/20

NC's Clean Cities Coalitions

Fleets:

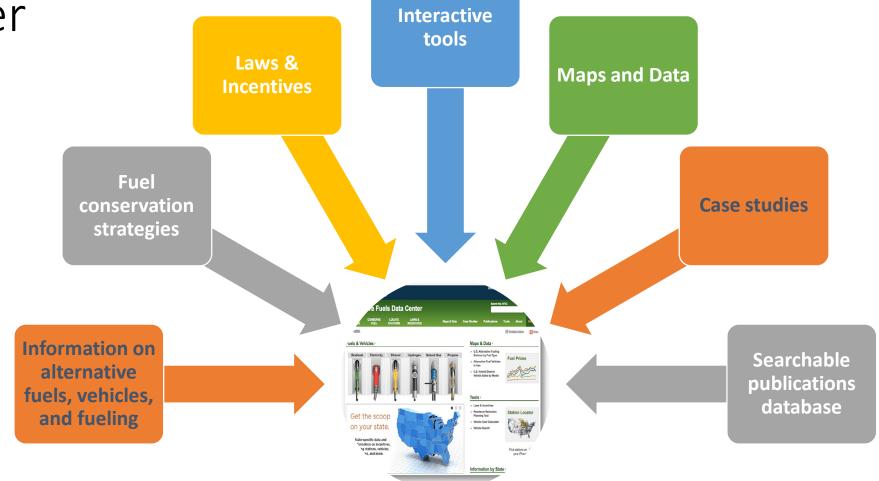
- Private companies
- Federal, state, and municipal
- School districts, universities
- Airports, transit agencies
- Taxi companies, ride share services.

Product and Service Providers:

- Vehicle and engine manufacturing
- Conversion companies
- Vehicle dealerships
- Fueling equipment suppliers, installers, and providers.

Others:

- Environmental and energy agencies
- Alternative fuel and clean air advocacy organizations
- General public.


Coalition Strategies

U.S. Department of Energy

Centralina Clean Fuels Coalition

Alternative Fuels Data Center

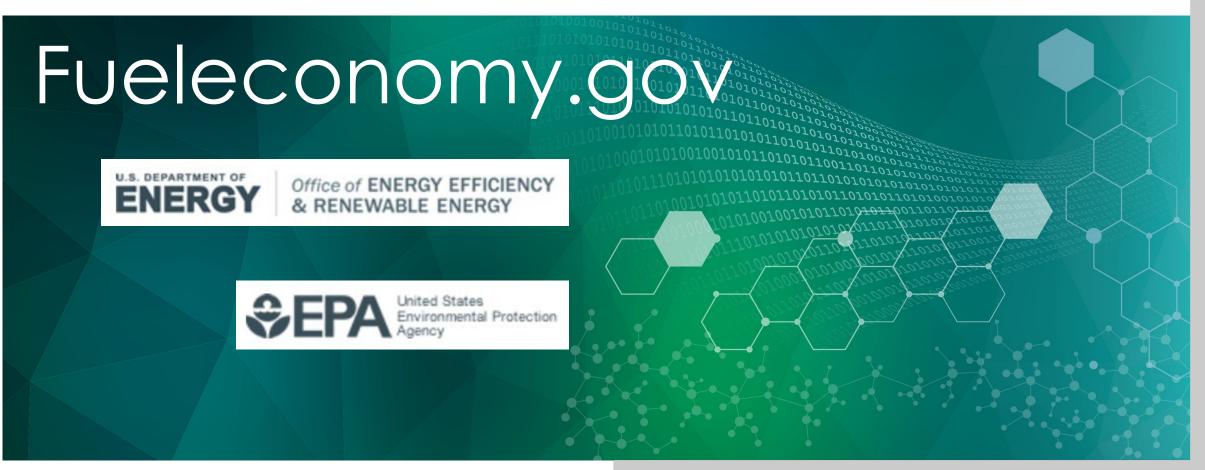
Resources



fueleconomy.gov

Want to Connect?

Please visit <u>https://cleancities.energy.gov/</u> to find your local coalition or contact Carina Soriano, Co-Coordinator at <u>csoriano@centralina.org</u>

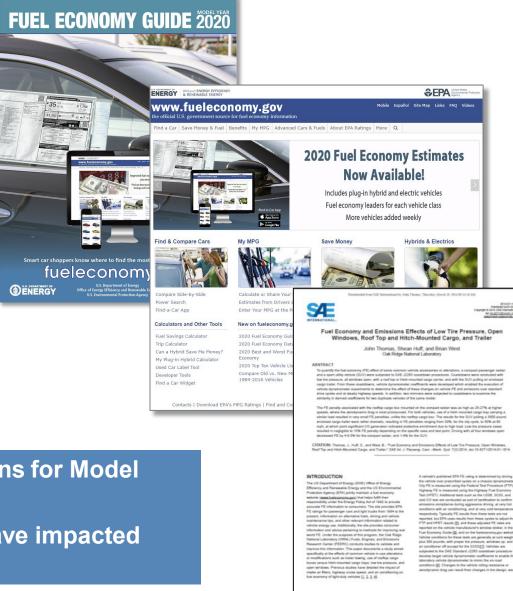

865-341-1256

- Research staff member of the Transportation Analytics and Decision Sciences Group at Oak Ridge National Laboratory's National Transportation Research Center
- More than 30 years experience working with transportation energy data.
- Manages Fuel Economy Information (FEI) Project for the US DOE & EPA, prepares and updates the annual Fuel Economy Guide and the website fueleconomy.gov
- Lead author of the Transportation Energy Data Book and prepares the DOE Vehicle Technologies Office's Transportation Fact of the Week
- Transportation Research Board's Committee on Transportation Energy and the Committee on Alternative Transportation Fuels and Technologies
- Bachelor of Science in Transportation and Logistics from the University of Tennessee

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

November 10, 2020 Stacy C. Davis


Current Team Members

Gina AccawiStacy DavisDebbie BainColby EarlesRobert BoundyRobert GibsonKita CranfillKerry Hake

Janet Hopson Jackie RichardsonShean HuffScott SluderJia (Lisa) LiJohn ThomasKaren NolenW. T. Wilson

The Fuel Economy Information Program at ORNL

- ORNL has managed the DOE Fuel Economy Information Program since 1999. Our primary products:
 - 1. Annual Fuel Economy Guide (required by statute)
 - 2. Fueleconomy.gov website
 - 3. Fuel economy research
 - Just over 20 million user sessions for Model Year 2020.
 - Low fuel prices and COVID19 have impacted this year's traffic.

>

Useful Fueleconomy.gov Tools

- Find and Compare Cars
 - Power Search
 - Smartway Vehicle Search
- Trip Calculator
- Fuel Savings Calculator
- Beyond Tailpipe Calculator
- My MPG
- My Plug-in Hybrid Calculator
- Can a Hybrid Save Me Money?
- Fuel Economy vs. Highway Speed
- Developer Tools
 - Find a Car and Tips Widgets
 - Web Service Data

Finding Find a Car Searches

ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SEPA www.fueleconomy.gov Mobile Español Site Map Links FAQ Videos the official U.S. government source for fuel economy information Click on "Find a Find a Car Save Money & Fuel Benefits My MPG Advanced Cars & Fuels About EPA Ratings More Q Car" top menu Used Car Label Searches Find a Car - Home obile app puts Find a Car - Home Compare Side by Side other car-buying Power Search Power Search 39 MPG 41 35 Search by Make fingertips! Hybrids, Diesels, and Alternative Fuel Cars Find a Smartway e and Android elling your car? We can help Find a SmartWay Vehicle ind a fuel efficient vehicle that Best and Worst Vehicles meets your needs Fueleconomy.gov Top Ten App Store Vehicle Today's Most Viewed Vehicles **Fuel Economy Guides** Print the Guide **Hybrids & Electrics** Help Promote Fuel Economy Compare Side-by-Side Calculate or Share Your MPG Gas Mileage Tips Hybrids Estimates from Drivers Like You Fuel Cost Calculator Plug-in Hybrids Power Search Find-a-Car App Enter Your MPG at the Pump Find the Cheapest Gas All-Electric Vehicles **Calculators and Other Tools** New on fueleconomy.gov... **Quick Picks Related Links** Fuel Savings Calculator 2020-21 Fuel Economy Guide Find a Car App for Apple and VW, Bentley, Audi and Porsche Android MPG Estimates Revised Trip Calculator 2020-21 Fuel Economy Data Top 10 - Most Efficient Vehicles, Clean Cities Can a Hybrid Save Me Money? 2020 Best and Worst Fuel Myths and More Economy Alternative Fuels Data Center My Plug-in Hybrid Calculator Vehicle Cost Calculator Compare Old vs. New EPA MPG 2020 Top Ten Vehicle Lists Used Car Label Tool Station Locator Find a SmartWay Vehicle Compare Old vs. New MPG for Developer Tools EV Explorer 1984-2016 Vehicles Extreme MPG Find a Car Widget Motorweek Videos

Power Search

https://fueleconomy.gov/feg/powerSearch.jsp

e official U.S. government source for fuel economy information ind a Car Save Money & Fuel Benefits My MPG Advanced Cars & Fuels About EPA Ratings More Q Power Search Expand any feature by selecting its title. Choose as many or as few features as you like. Model Year From: 2020 V To: 2021 V Make Supercharger Start-Stop	CAL DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY	CONTRACT States Environmental Protectio	on .
ind a Car Save Money & Fuel Benefits My MPG Advanced Cars & Fuels About EPA Ratings More Q Power Search Expand any feature by selecting its title. Choose as many or as few features as you like. Model Year	www.fueleconomy.gov	Mobile Español Site Map Links FAQ Videos	
Expand any feature by selecting its title. Choose as many or as few features as you like. Model Year		bout EPA Ratings More Q	
MSRP	Model Year From: 2020 V To: 2021 V Make Market Class	Supercharger Exclude Supercharger	-
	Drive Engine Technology		
Engine Technology	Fuel Type	Conventional Gasoline	🗌 Hybrid 👩
Engine Technology Cylinders	Vehicle Type	Diesel	🗌 Plug-in Hybrid 🍘
Engine Technology Cylinders Fuel Type Conventional Gasoline		Flex-Fuel (E85)	🗌 All Electric 🕜

Example of Results of Power Search

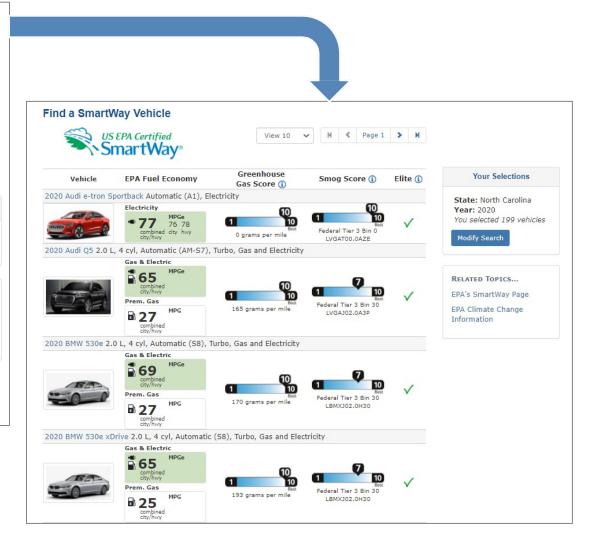
Search Results									
Sorting is based on EPA Combined	City/Hwy MPG. 📵								
Sort - Personalize	View 10 🗸	IK K Page	e 1 💙 🔰						
MPG Energy & Environment	Costs			My Selections					
Vehicle	EPA Fuel Economy 4	Driver MPG	Annual Fuel Cost	Years: 2020-2021 Start-Stop					
2021 Hyundai Elantra 2.0 L, 4 d	cyl, Automatic (AV-S1), Regular Gasoline			Vehicle Type: Gasoline	You are here: Find a Car Hom	e > Power Search > Compare Si	de-by-Side		f 🗾 🖾 🗟 🛃 Share
Compare	B 37 MPG 33 43 combined city hwy 2.7 gal/100 mi	NA	\$850	(Showing 1 to 10 of 946 vehicles) Modify	Compare Side by Side Fuel Economy Energy and Environment Safety Specs				
2020 Volkswagen Jetta 1.4 L, 4 cyl, Automatic (S8), Turbo, Regular Gasoline						2021 Hyundai Elantra 🗙	2020 Volkswagen Jetta X	2021 Honda Accord X	2021 Volkswagen Jetta 🗙
Compare	Combined city hwy 2.9 gal/100 mi	NA	\$950		Personalize Edit Vehicles	Gasoline Vehicle	Gasoline Vehicle	Gasoline Vehicle	Gasoline Vehicle
2021 Honda Accord 1.5 L, 4 cyl	, Automatic (variable gear ratios), Turbo	, Regular Gasoline			Edit Venicies	<u> </u>	9		
Compare	Combined combined city/hwy 3 gal/100 mi	NA	\$950			2.0 L, 4 cyl, Automatic (AV-S1)	1.4 L, 4 cyl, Automatic (S8), Turbo MSRP: \$18,895 - \$27,945	1.5 L, 4 cyl, Automatic (variable gear ratios), Turbo	1.4 L, 4 cyl, Automatic (S8), Turbo
✓ 2021 Volkswagen Jetta 1.4 L, 4 cyl, Automatic (S8), Turbo, Regular Gasoline					Regular Gasoline	Regular Gasoline	Regular Gasoline	Regular Gasoline	
	P 33 29 39 combined city hwy dty/hwy 3 gal/100 mi	NA	\$950		EPA Fuel Economy	B 37 MPG 33 43 combined city highway city/highway 2.7 gal/100mi	34 MPG 30 40 combined city highway city highway 2.9 gal/100mi Gasoline 449 miles Total Range	B 33 BPC combined city highway city/highway 3.0 gal/100mi	APC 29 39 combined city highway city/highway 3.0 gal/100mi
					Unofficial MPG Estimates from Vehicle Owners Learn more about "My MPG" Disclaimer	User MPG estimates are not yet available for this vehicle	User MPG estimates are not yet available for this vehicle	User MPG estimates are not yet available for this vehicle	User MPG estimates are not yet available for this vehicle
					You save or spend* Note: The average 2021 vehicle gets 27 MPG	You SAVE \$1,750 in fuel costs over 5 years compared to the average new vehicle	You SAVE \$1,250 in fuel costs over 5 years compared to the average new vehicle	You SAVE \$1,250 in fuel costs over 5 years compared to the average new vehicle	You SAVE \$1,250 in fuel costs over 5 years compared to the average new vehicle
					Annual Fuel Cost*	\$850	\$950	\$950	\$950
					Cost to Drive 25 Miles	\$1.45	\$1.57	\$1.62	\$1.62
					Cost to Fill the Tank		\$28		
					Tank Size		13.2 gallons		
	INAL SPORTATION ARCH CENTER				MSRP and tank size data provid	city driving, 15,000 annual miles an ed by Edmunds.com, Inc. costs assume 100% of fuel in tank v			

Find a Smartway Vehicle

Find a SmartWay Vehicle

Looking for an environmentally friendly vehicle?

Cars and trucks awarded EPA's SmartWay certification emit less greenhouse gas (GHG) and smog-forming tailpipe emissions than other vehicles.


Tell me more...

Step 1. Select State of purchase.

North Carolina 🛛 🗙 Required

Step 2. Choose as many or as few features as you like.

Model Year	My Selections			
From: 2020 V To: 2020 V	¥ Years: 2020 - 2021			
Make				
Miles Per Gallon	RELATED TOPICS			
Market Class	EPA's SmartWay Page EPA Climate Change			
Fuel Type	Information			
Vehicle Type				
Drive				

https://fueleconomy.gov/feg/SmartWay.do

CAK RIDGE National Laboratory

Find Trip Calculator and Fuel Savings Calculator

Contacts | Download EPA's MPG Ratings | Find and Compare Cars | USA.gov | Info for Auto Dealers | Privacy/Security | Feedback

This site last modified Friday July 10 2020

https://fueleconomy.gov/trip/

https://fueleconomy.gov/ feg/savemoney.jsp

Actional Laboratory RESEARCH CENTER

Trip Calculator

Fueleconomy.gov's interactive trip calculator uses fueleconomy.gov data and Google maps to help you plan your route, pick your car, and estimate your fuel cost for the trip.

- By default the tool uses EPA fuel economy estimates and EIA fuel prices, but these values can be personalized
- Mobile Friendly
- Users can compare fuel costs for any number of vehicles
- Supports all-electric vehicles (but not PHEVs yet)

In FY2019, users used the tool to estimate fuel costs for over 1 million trips!


Fuel Savings Calculator

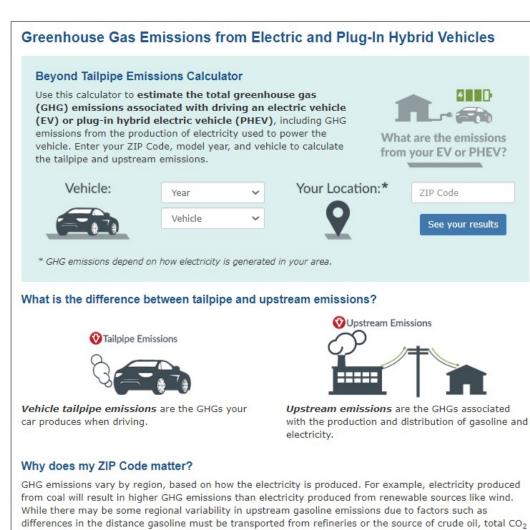
Fueleconomy.gov's fuel savings calculator uses fueleconomy.gov data to help compare costs when buying a vehicle.

- Can personalize fuel prices and driving habits
- Can add purchase costs or lease costs
- Supports plug-in hybrids and allelectric vehicles

Save Money Improved fuel economy saves you money every time you fill up! A vehicle that gets 30 MPG will cost you \$535 less to fuel each year than one that gets 20 MPG (assuming 15,000 miles of driving annually and a fuel cost of \$2.14). Over a period of 5 years, the 30-MPG vehicle will save you \$2,675. Calculate Fuel Costs and Savings () Vehicle A Vehicle B **Regular Gasoline Regular Gasoline** Gasoline Vehicle **Gasoline Vehicle** MPG 25 30 city hwy MPG 19 27 city hwy 22 27 2020 Buick Regal AWD 2021 Chevrolet Equinox AWD 1.5 L, 4 cvl, Automatic, Turbo 3.6 L. 6 cvl. Automatic Personalize Fuel Prices and Drive Habits **Fuel Costs** Yearly Monthly Weekly Per Mile 10 Years Vehicle A Vehicle B Veh. B Saves Costs 10 Years \$14,590 \$11,890 \$2,700 Yearly \$1,459 \$1,189 \$270 \$1,459 Monthly \$122 \$99 \$23 \$1,189 Dollars \$5 Weekly \$28 \$23 \$270 Per Mile 9.7¢ 7.9¢ 1.8¢ Vehicle B Vahicla R Sava Vehicle A Add Lease Costs Add Purchase Costs

Finding Beyond Tailpipe Calculator

CAK RIDGE NATIONAL


National Laboratory | RESEARCH CENTER

28

https://fueleconomy.gov/feg/ Find.do?action=bt2

Beyond Tailpipe Calculator

- Inputs are:
 - model year,
 - make & model, and
 - zip code.
- Calculator gives an estimate of:
 - upstream greenhouse gas emissions for allelectric vehicles,
 - upstream and tailpipe greenhouse gas emissions for plug-in hybrid vehicles.

Learn more about electricity production in your ZIP Code.

emissions for a gasoline vehicle are dominated by emissions at the tailpipe. Tailpipe emissions do not vary

significantly by region.

Actional Laboratory RESEARCH CENTER

Beyond Tailpipe Results

Greenhouse Gas Emissions from Electric and Plug-In Hybrid Vehicles – Results

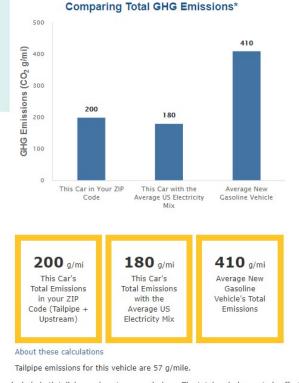
Beyond Tailpipe Emissions Calculator

Vehicle:

2018 Vehicle V

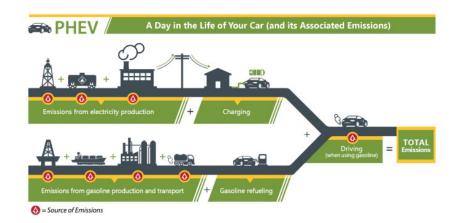
Select vehicle

Your Location:


37771 (Lenoir City, TN)

GHG emissions depend on how electricity is generated in your area.

222

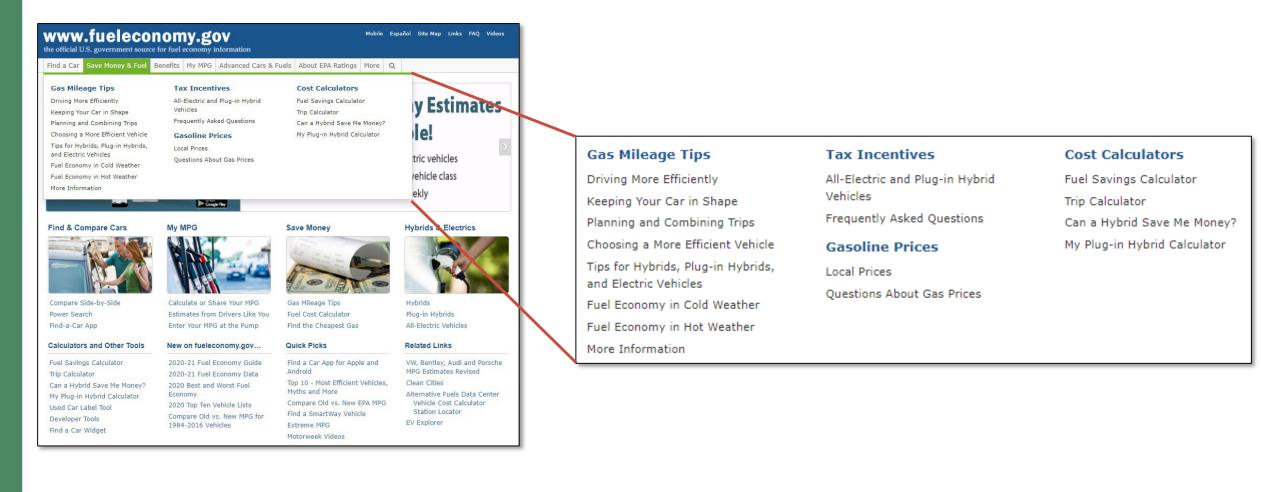

The Honda Clarity Plug-in Hybrid is a plug-in hybrid.

Total emissions include both tailpipe and upstream emissions. The total emissions rate is affected by a vehicle's efficiency (MPG and/or MPGe), the fuel or fuels used to power the vehicle (electricity and/or gasoline), and how that fuel is produced and distributed. This car's emissions in your ZIP Code may be different than the average in the US because different fuel sources are used to produce electricity in different parts of the country. *Learn more below!*

How much of my car is powered by electricity vs. gasoline?

These estimates assume that 73.1% of this vehicle's operation is powered by electricity and the rest is powered by gasoline. This assumption is based on the vehicle's design and average driving habits.

What is the difference between tailpipe and upstream emissions?


Why does my ZIP Code matter? >

** Our estimates only consider carbon dioxide (CO₂) emissions, which account for 95% to 99% of the total greenhouse gas emissions from a passenger vehicle—after accounting for the global warming potential of all GHGs. More info. CO₂ is also the predominant greenhouse gas associated with electricity production. More info.

Electricity-related emissions are estimated using the most recently available data. Due to data collection and processing time, the electricity generation data can sometimes be several years old. GHG emissions associated with the electricity grid today may be lower than indicated in many regions due to a shift to less CO_2 -intensive feedstocks. Plus, purchasing green power could lower your CO_2 emissions even more.

Save Money and Fuel

CAK RIDGE NATIONAL TRANSPORTATION RESEARCH CENTER

Electric Vehicle Federal Tax Incentives Updated as Needed

- Tax incentive data comes from the IRS website or a manufacturer providing IRS certification letter
- Includes Tesla and GM phaseout dates
- No other manufacturers have reached their phase-out stage

www.fueleconomy.gov Mobile Es the official U.S. government source for fuel economy information Find a Car Save Money & Fuel Benefits My MPG Advanced Cars & Fuels About EPA Ratings More Q Federal Tax Credits for New All-Electric and Plug-in Hybrid Vehicles Federal Tax Credit Up To \$7,500! All-electric and plug-in hybrid cars purchased new in or after 2010 may be eligible for a federal income tax credit of up to \$7,500. The credit amount will vary based on the capacity of the battery used to power the vehicle. State and/or local incentives may also apply. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Filter table by... Vehicle Type Manufacturer OR ○ All-Electric EV Chevrolet ○ Plug-in Hybrids PHEV All Phase Out Vehicle Make & Model Vehicle Type Full Credit 25% 50% General Motors vehicles purchased after 3/31/2020 are not eligible for these tax credits. 1/1/10 to 4/1/19 to 10/1/19 to Chevrolet 3/31/19 9/30/19 3/31/20 2017-20 Chevrolet Bolt EV EV \$7,500 \$3.750 \$1,875 2011-19 Chevrolet Volt \$7,500 \$3,750 \$1,875 2014–16 Chevrolet Spark EV \$7,500 \$3,750 \$1,875

Research underway in 2020

- What are the fuel savings from using the engine's auto stop-start feature?
 Compare fuel use with and without auto stop-start enabled.
- Do fuel stabilizing products provide a benefit?
 - Assess the function of three popular off-the-shelf stabilizers over extended time periods, testing for gum formation, oxidation stability, RVP, and others.
- Use the information to update tips on FuelEconomy.Gov.

CAK RIDGE National Laboratory

Thank You!

Contact

Stacy C. Davis Oak Ridge National Laboratory (865) 341-1256 <u>davissc@ornl.gov</u>

Patricia Weikershimer PWeikersheimer@anl.gov 630-252-3124

- Communications writer and editor for Argonne National Laboratory
- Area of expertise is idling and idle reduction technologies
- Researched and wrote National Idling Reduction Network News, a monthly newsletter of the Department of Energy's Vehicle Technologies Office
- Key member of the team that developed Clean Cities IdleBox

2020 SUSTAINABLE FLEET TECHNOLOGY VIRTUAL CONFERENCE

IDLEBOX FOR IDLE REDUCTION EDUCATION AND OUTREACH

PATRICIA WEIKERSHEIMER Argonne National Laboratory pweikersheimer@anl.gov

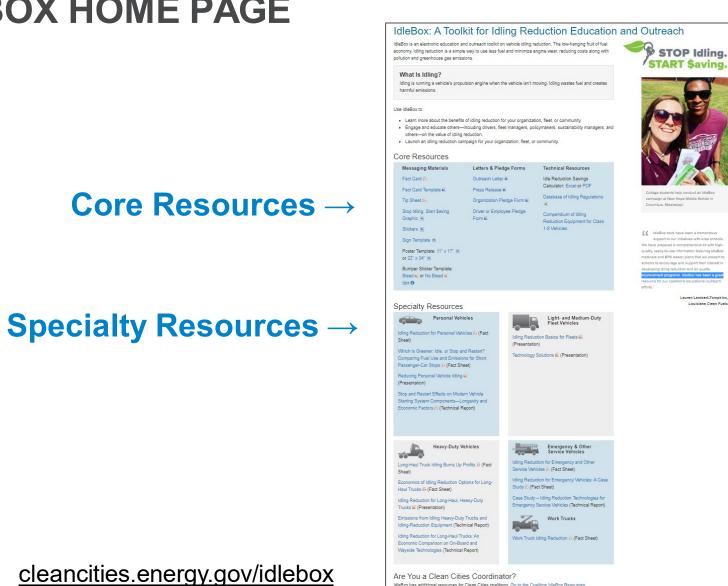
November 10, 2020

IDLING REDUCTION: THE LOW-HANGING FRUIT OF FUEL ECONOMY

- Idling may count as "engine hours"—the more idling, the shorter the maintenance intervals
 - Higher annual costs
- Any fleet can undertake idling reduction
 - Scalable: Basic to advanced

WHAT IS IDLEBOX?

IdleBox is an **electronic**, **modular toolkit** to help you advance the acknowledged low-hanging fruit of fuel economy—**idling reduction**.



IDLEBOX HOME PAGE

cleancities.energy.gov/idlebox

3 9

IDLEBOX: CORE RESOURCES

Core Resources

Fact Card

Tip Sheet 😕

Graphic 💽

Stickers 🛐

Messaging Materials

yc you hold the	
you hold the	
to being	
Idle f	

Fact Card Template Stop Idling. Start \$aving Form 🗐 Sign Template 💽 Poster Template: 11" x 17" 💽 or 22" x 34" 💽

Bumper Sticker Template: Bleed i or No Bleed tips **6**

Forms Outreach Letter Press Release **Organization Pledge**

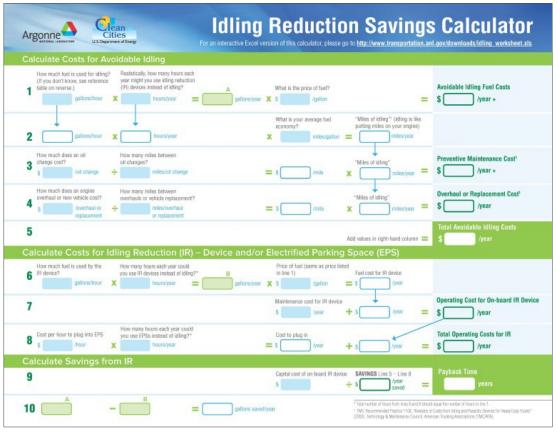
Letters & Pledge

Driver or Employee Pledge Form

Technical Resources

Idle Reduction Savings Calculator: Excel or PDF

Database of Idling Regulations 🗐


Compendium of Idling **Reduction Equipment for** Class 1-8 Vehicles

IDLING REDUCTION SAVINGS CALCULATOR

The Idling Reduction Savings Calculator

helps fleet managers and others estimate how much they can save with idling reduction.

www.anl.gov/es/reference/vehicle-idle-reduction-savings-worksheet-pdf www.anl.gov/es/reference/vehicle-idle-reduction-savings-worksheet-excel

IDLING REDUCTION TECHNOLOGY SOLUTIONS

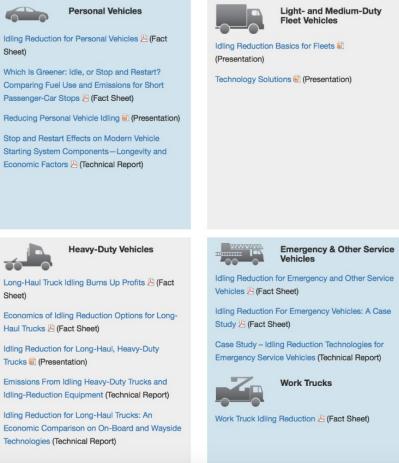
Describes and provides links to 50+ products.

Organized by service(s) needed:

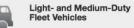
- Idle management
- Heat only
- Cooling only
- Heat, cooling, and power (auxiliary power unit)
- Power take-off
- Cargo refrigeration
- Wayside power / truck stop electrification

Idling Reduction Technology Solutions for Class 1–8 Vehicles^{*, +}

Services provided	Vehicle type (LD, MD, HD, trailer)	Power source	Company/Product(s)	EPA verification [‡]	Notes
Idle managen	nent				
	LD, MD	Battery/electric	Derive Systems / Derive Efficiency	No	Idle efficiency gains are achieved by reducing idle RPM levels
	LD, MD, HD	Battery/electric	GRIP / Grip Idle Management	No	Enables use of heat and cooling and provides power for auxiliaries while maintaining battery state of charge
	LD	Battery/electric	Havis / ChargeGuard	No	Automatic idle shutoff timer
	LD, MD	Battery/electric	Havis / IdleRight2	No	Monitors the battery's voltage while the vehicle is turned off and electronics, such as emergency lighting, are on. Restarts vehicle when battery voltage drops below a preset level
	MD, HD	Battery/electric	IdleSmart / IdleSmart	No	Cycles engine on and off as needed to maintain battery state of charge and coolant heat
	LD, MD, HD	Battery/electric	InterMotive Vehicle Controls / EcoStar	No	Programmable system that automatically turns the engine off when specific customizable conditions are met
	HD	Battery/electric	Temp-a-Start / Temp-a-Start system	No	Cycles engine on or off to maintain engine block temperature, battery state of charge, and/or bunk temperature
	LD, MD, HD	Battery/electric	Vanner / IdleWatch	No	Idle management system to cycle on and off engine as needed to maintain battery state of charge and coolant heat


Argonne

www.anl.gov/es/reference/idling-reduction-technology-solutions-for-class-18-vehicles



IDLEBOX: SPECIALTY RESOURCES

Specialty Resources

Emergency & Other Service Vehicles

Work Trucks

Idling Reduction Basics for Fleets

Technology Solutions (Presentation)

CONTRACTMENT OF Argonne National Laboratory is a US Department of Energy laboratory managed by UChicago Argonne, LLS

OTHERS' USE OF IDLEBOX MESSAGING

ComEd, Illinois's largest electric utility

Bank of Utah

Kane County, Illinois

ENERGY Aroome Netional Leocetory is a US Department of Energy leboratory managed by Othlogo Argonne, LLC

THANK YOU Work sponsored by the U.S. Department of Energy's Vehicle Technologies Office (VTO)

Argonne's Technology Integration/Clean Cities Team supporting VTO.

Patricia Weikersheimer Argonne National Laboratory pweikersheimer@anl.gov 630-252-3124

Andy Burnham aburnham@anl.gov 630-252-6606

- Principal Environmental Scientist at Argonne National Laboratory
- Research focuses on transportation energy and environmental issues specifically with the energy use and emissions analysis for advanced vehicle technologies and transportation fuels
- Developer the Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool
- Estimates petroleum use, greenhouse gas emissions, air pollutant emissions, and cost of ownership of light-duty and heavy-duty alternative fuel and advanced vehicles

2020 SUSTAINABLE FLEET TECHNOLOGY VIRTUAL CONFERENCE

"AFLEET TOOL" TO ANALYZE THE COSTS AND BENEFITS OF ALTERNATIVE FUEL VEHICLES

ANDY BURNHAM Principal Environmental Scientist aburnham@anl.gov

November 10, 2020

AFLEET Suite of Tools

AFLEET Online

User-friendly interface analyzes petroleum use, emissions, simple payback

Heavy Duty Vehicle Emissions Calculator

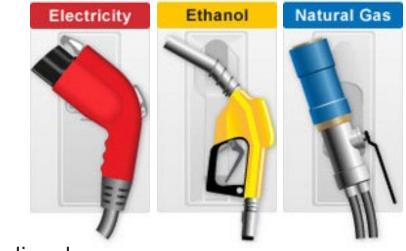
Compares NOx, PM, GHGs and cost-effectiveness

afleet-web.es.anl.gov

AFLEET SPREADSHEET AND ONLINE

AFLEET SPREADSHEET

Examines light-duty & heavy-duty vehicle:


- Petroleum use
- GHGs
- Air pollutants
- Cost of ownership
- Contains 18 fuel/vehicle technologies
 - Conventional
 - Hybrids
 - Plug-in electrics
 - Alternative fuels: CNG, LNG, LPG, H₂, ethanol, biodiesel, renewable diesel

New features in AFLEET 2019 Spreadsheet

- Off-Road Footprint calculator
- Public EV Charging calculator
- Low-NOx LPG engines

• AFLEET Spreadsheet and Online; HDVEC: <u>afleet-web.es.anl.gov</u>

- Updates will be released later this year

AFLEET TOOL'S CALCULATION METHODS

1. Simple Payback Calculator

- Annual emissions & simple payback: new AFV vs. conventional

2. Total Cost of Ownership Calculator

- Lifetime emissions & NPV of costs: new AFV vs. conventional

3. Idle Reduction Calculator

- Annual emissions & simple payback: IR equipment vs. idling

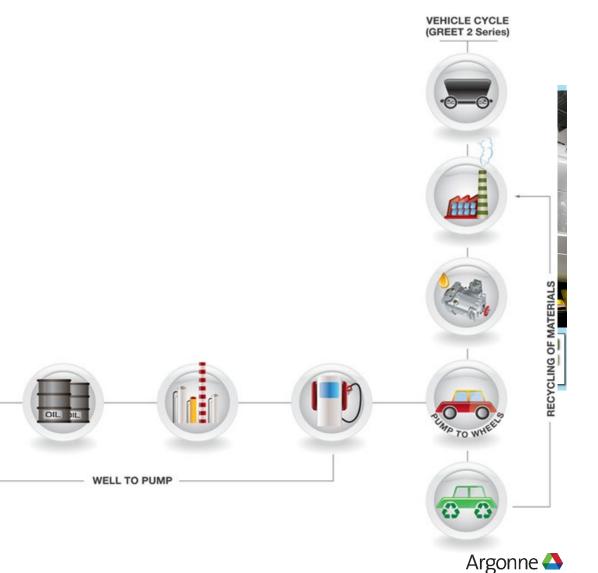
4. On-Road Fleet Footprint Calculator

Annual & remaining lifetime emissions of <u>existing & new vehicles</u>

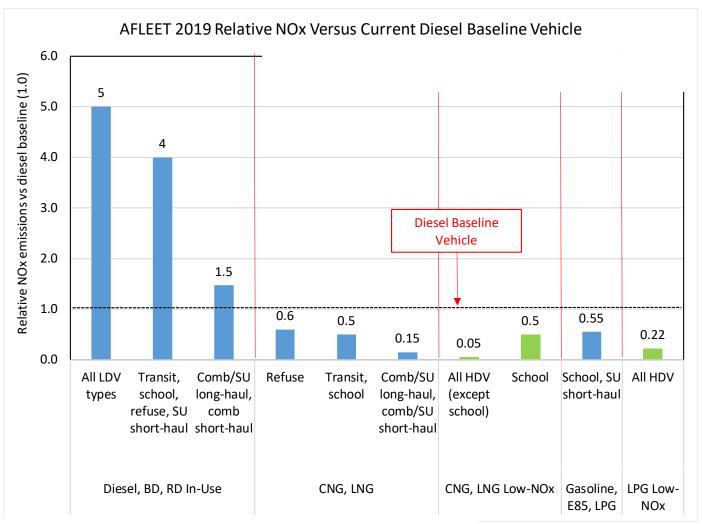
5. Off-Road Fleet Footprint Calculator

- Annual & remaining lifetime emissions of existing & new off-road equipment

6. EV Charging Calculator


- Annual emissions benefit of utilizing public charging infrastructure

KEY DATA SOURCES


- Petroleum use, GHGs, air pollutants factors from Argonne's GREET 1 2019
 - Updated fuel economy data
- Vehicle air pollutant emission factors from EPA's MOVES 2014b
- Fuel prices using Clean Cities Alternative Fuel Price Reports

FUEL CYCLE (GREET 1 Series)

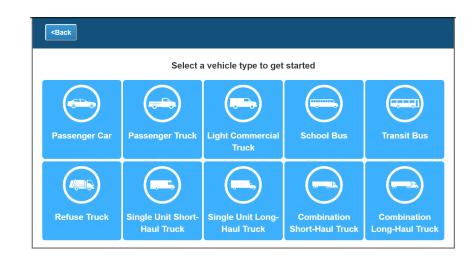
AFLEET TOOL 2019 – DIESEL IN-USE & LOW-NO_X EMISSIONS

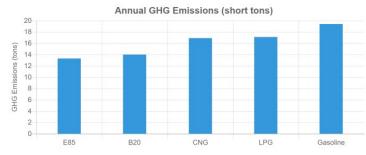
- Diesel in-use NOx feature
 - EPA's MOVES (& DEQ) needs to revise diesel NOx
- Heavy-duty low-NOx feature
 - Added LPG low-NOx in AFLEET 2019

Anenberg, 2017, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

Cai, 2017, Wells to Wheels: Environmental Implications of Natural Gas As A Transportation Fuel

Sandhu, 2017, In-Use Emission Rates for MY 2010+ Heavy-Duty Diesel Vehicles


Ryskamp, 2020, Chassis Dynamometer Evaluation of Propane Powered MD to HD Vehicles


AFLEET ONLINE

- User friendly, web-based version
 - Replicates Simple Payback Calculator
- Examines light-duty & heavy-duty vehicle:
 - Petroleum use
 - GHG emissions
 - Air pollutant emissions
 - Simple payback
- Contains 18 fuel/vehicle technologies
 - Conventional: 2
 - Hybrids: 3
 - Plug-in electrics: 3
 - Alternative fuels: 10

• AFLEET Online: <u>afleet-web.es.anl.gov/afleet/</u>

HDVEC Introduction

HEAVY-DUTY VEHICLE EMISSIONS CALCULATOR

- Simple online tool based on AFLEET to help analyze AFVs for funding opportunities
- Examines medium-duty & heavy-duty vehicle:
 - Vehicle operation NO_x & PM_{2.5}
 - WTW GHGs
 - Emission reduction cost effectiveness
- Contains 4 fuel/vehicle technologies:
 - Diesel
 - Electric vehicle
 - Propane
 - Natural gas
- HDVEC available at:

afleet-web.es.anl.gov/hdv-emissions-calculator/

HDVEC'S CALCULATION METHODS

Environmental Mitigation w/ Scrappage

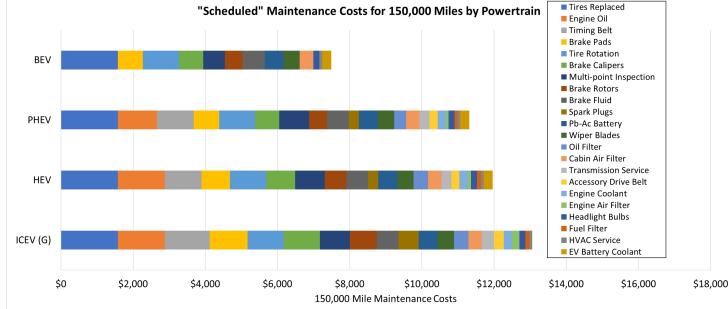
 New AFV vs. new diesel, plus additional benefit from early retirement of scrapped vehicle

Environmental Mitigation w/ Repower

- Vehicle after repower vs. diesel vehicle before repower

Clean Vehicle Replacement

- New AFV vs. new diesel



AFLEET TOOL 2020 PLANNED UPDATES

- Forthcoming update of MOVES emissions data
 - Should address diesel in-use NOx
- New off-road fuel use/emissions data from ports analysis
 - Cargo handling equipment
 - Harbor craft
 - Ocean-going vessels
 - Rail
- Update vehicle maintenance, insurance, depreciation and fee data

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

> This work has been supported and assisted by: Linda Bluestein: U.S. DOE Dennis Smith: U.S. DOE Marcy Rood: Argonne Joann Zhou: Argonne Shannon O'Donnell, Maddy Seveska, Sandra Marquez

www.anl.gov

AFLEET TUTORIAL – DEMO #1

Using the Fleet Footprint Calculator to Examine Existing Fleet

Ist step: enter location on "Inputs" sheet

Primary Vehicle Location	
State	CALIFORNIA
County	LOS ANGELES

 2nd step: adjust fuel production & energy/emission assumptions on "Inputs" sheet

Biodiesel Feedstock Source	1 - Soy	1	
	2 - Canola		
	3 - Corn		
	4 - Tallow		
Ethanol Feedstock Source	1 - Corn	1	
	2 - Switchgrass		
	3 - Sugarcane		
	4 - Grain Sorghum		
CNG Feedstock Source	1 - North American NG	1	
	2 - Landfill Gas		
	3 - AD Gas of Animal Waste		
	4 - AD Gas of Wastewater Sludge		
	5 - AD Gas of MSW		
North American NG Feedsto	ock Source	Conventional	Shale
		66%	34%
LPG Feedstock Source		NG	Petroleum
		69%	31%
Source of Electricity for PHE	Vs, EVs, and FCVs (Electrolysis)	7	
	1 - Average U.S. Mix		
	2 to 11 - EIA Region Mix (see map)		
	<u> 12 - User Defined (go to 'Backgrour</u>	nd Data' sheet)	
G.H2 Production Process	1 - Refueling Station SMR (On-site)	1	
	2 - Central Plant SMR (Off-site)		
	3 - Refueling Station Electrolysis (O	n-site)	

Petroleum Use, GHGs & Air Pollutant Options

1				
1 - WTW Petroleum Use and GHGs & Tailpipe Air Pollutants				
3 - WTW & Vehicle Production* Petroleum Use, GHGs, Air Pollutants (*LDVs only)				
No				
Yes				
	No			

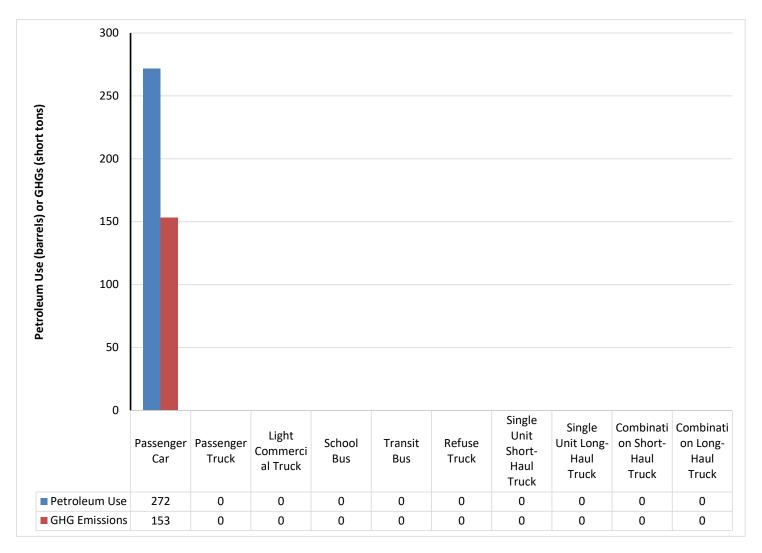
Note: Several fuels are not shown for clarity in this presentation

- 4th step: copy and paste fleet data into "Footprint" sheet
 - Model year
 - Annual mileage
 - Fuel use

• 5th step: adjust vehicle type via drop-down

				Fuel Use				Vehicle Operation Air Pollutant Emissions (lb)							
Vehicle Type	Model Year	Annual Vehicle Mileage	Gasoline (gal)	Diesel (gal)	Gasoline HEV (gal)	Petroleum Use (barrels)	GHG (short tons)	со	NOx	PM10	РМ10 (TBW)	PM2.5	PM2.5 (TBW)	voc	VOC (Evap)
Passenger Car	2005	10,255	513			10.7	6.0	92.4	7.0	0.1	0.7	0.1	0.1	3.9	2.6
Passenger Car	2005	10,312	516			10.8	6.1	92.9	7.0	0.1	0.7	0.1	0.1	3.9	2.7
Passenger Car	2005	10,369	518			10.8	6.1	93.4	7.0	0.1	0.7	0.1	0.1	3.9	2.7
Passenger Car	2005	10,426	521			10.9	6.1	93.9	7.1	0.1	0.7	0.1	0.1	4.0	2.7
Passenger Car	2005	10,483	524			10.9	6.2	94.4	7.1	0.1	0.7	0.1	0.1	4.0	2.7
Passenger Car	2005	10,540	527			11.0	6.2	94.9	7.2	0.1	0.7	0.1	0.1	4.0	2.7
Passenger Car	2005	10,597	530			11.1	6.2	95.5	7.2	0.1	0.7	0.1	0.1	4.0	2.7
Passenger Car	2005	10,654	533			11.1	6.3	96.0	7.2	0.1	0.7	0.1	0.1	4.0	2.7
Passenger Car	2005	10,711	536			11.2	6.3	96.5	7.3	0.1	0.7	0.1	0.1	4.1	2.8
Passenger Car	2005	10,768	538			11.2	6.3	97.0	7.3	0.1	0.7	0.1	0.1	4.1	2.8
Passenger Car	2005	10,825	541			11.3	6.4	97.5	7.4	0.1	0.7	0.1	0.1	4.1	2.8
Passenger Car	2005	10,882	544			11.4	6.4	98.0	7.4	0.1	0.7	0.1	0.1	4.1	2.8
Passenger Car	2007	10,939	497			10.4	5.9	67.6	3.9	0.1	0.7	0.1	0.1	2.7	1.8
Passenger Car	2007	10,996	500			10.4	5.9	68.0	3.9	0.1	0.7	0.1	0.1	2.7	1.8
Passenger Car	2007	11,053	502			10.5	5.9	68.3	3.9	0.1	0.7	0.1	0.1	2.7	1.8
Passenger Car	2007	11,110	505			10.5	5.9	68.7	4.0	0.1	0.7	0.1	0.1	2.7	1.8
Passenger Car	2007	11,167	508			10.6	6.0	69.0	4.0	0.1	0.7	0.1	0.1	2.8	1.8
Passenger Car	2007	11,224	510			10.7	6.0	69.4	4.0	0.1	0.7	0.1	0.1	2.8	1.9
Passenger Car	2007	11,281	513			10.7	6.0	69.7	4.0	0.1	0.7	0.1	0.1	2.8	1.9
Passenger Car	2007	11,338	515			10.8	6.1	70.1	4.0	0.1	0.7	0.1	0.1	2.8	1.9
Passenger Car	2007	11,395	518			10.8	6.1	70.4	4.1	0.1	0.8	0.1	0.1	2.8	1.9
Passenger Car	2007	11,452	521			10.9	6.1	70.8	4.1	0.1	0.8	0.1	0.1	2.8	1.9
Passenger Car	2007	11,509	523			10.9	6.2	71.1	4.1	0.1	0.8	0.1	0.1	2.8	1.9
Passenger Car	2007	11,566	526			11.0	6.2	71.5	4.1	0.1	0.8	0.1	0.1	2.9	1.9
Passenger Car	2007	11,623	528			11.0	6.2	71.8	4.2	0.1	0.8	0.1	0.1	2.9	1.9

Note: Several fuels are not shown for clarity in this presentation



• View existing fleet results on "Footprint Outputs" sheet

	Petroleum Use (GHG Emissions	СО	NOx	PM10	PM2.5	VOC
Vehicle Type	(barrels)	(short tons)	(lb)	(lb)	(lb)	(lb)	(lb)
Passenger Car	272	153	2,049	138	21	5	141
Passenger Truck	0	0	0	0	0	0	0
Light Commercial Truck	0	0	0	0	0	0	0
School Bus	0	0	0	0	0	0	0
Transit Bus	0	0	0	0	0	0	0
Refuse Truck	0	0	0	0	0	0	0
Single Unit Short-Haul Truck	0	0	0	0	0	0	0
Single Unit Long-Haul Truck	0	0	0	0	0	0	0
Combination Short-Haul Truck	0	0	0	0	0	0	0
Combination Long-Haul Truck	0	0	0	0	0	0	0
Total	272	153	2,049	138	21	5	141

• View existing fleet results on "Footprint Outputs" sheet

AFLEET TUTORIAL – DEMO #2

Using Simple Payback and TCO Calculators to Compare Potential Acquisitions

Ist step: enter key inputs on "Inputs" sheet

- State, County (for externalities) & vehicle type (via drop-down)
- # of vehicles, VMT, MPGGE, and purchase price
 - Default and MPDGE reference values available (to the side of below tables)
- Can simulate both an LDV and HDV

Primary Vehicle Location				
State	CALIFORNIA			
County	LOS ANGELES			
Heavy-Duty Vehicle Information				
Vehicle Type	Transit Bus			
				Purchase
	Number of Heavy-Duty	Annual Vehicle	Fuel Economy	Price
Heavy-Duty Fuel Type	Vehicles	Mileage	(MPDGE)	(\$/Vehicle)
Gasoline	0	0	3.4	\$0
Diesel	0	35,000	4.1	\$300,000
All-Electric Vehicle (EV)	0	35,000	11.3	\$750,000
Gaseous Hydrogen (G.H2) Fuel Cell Vehicle (FCV)	0	35,000	6.8	\$1,800,000
Diesel Hybrid Electric Vehicle (HEV)	0	35,000	5.7	\$510,000
Diesel Hydraulic Hybrid (HHV)	0	0	5.3	\$0
Biodiesel (B20)	0	35,000	4.1	\$300,000
Biodiesel (B100)	0	35,000	4.1	\$300,000
Ethanol (E85)	0	0	3.4	\$0
Propane (LPG)	0	0	3.4	\$0
Compressed Natural Gas (CNG)	0	35,000	3.5	\$360,000
Liquefied Natural Gas (LNG)	0	35,000	3.5	\$350,000
LNG / Diesel Pilot Ignition	0	0	3.9	\$0

Note: Red cells show values changed for demo, cell color doesn't change in AFLEET

- 2nd step: enter key fuel price inputs on "Inputs" sheet
 - Choose either public or private station fuel pricing (via drop-down)
 - Results based on state level AFPR data
 - Choose if you want to look at fuel price sensitivity for simple payback (via drop-down)
 - Enter fuel price data (in respective fuel unit)

Refueling Information	-			
Fueling Type	Private Station	For infrastructure costs, go to 'Payback' sheet To enter fuel price range, go to 'Payback' sheet		
Fuel Price Sensitivity	No			
Fuel and DEF Price				
		Public Station	Private Station	
	Fuel Unit	(\$/Fue	el Unit)	
Gasoline	gasoline gallon	\$3.01	\$2.84	
Diesel	diesel gallon	\$3.04	\$3.03	
Electricity	kWh	\$0.16	\$0.16	
G.H2	hydrogen kg	\$20.29	\$6.99	
B20	B20 gallon	\$2.92	\$2.70	
B100	B100 gallon	\$3.94	\$4.41	
E85	E85 gallon	\$2.59	\$2.56	
Propane	LPG gallon	\$3.01	\$2.63	
CNG	CNG GGE	\$2.43	\$1.96	
LNG	LNG gallon	\$2.86	\$2.11	
Diesel Exhaust Fluid (DEF)	DEF gallon	\$2.80	\$2.80	

• 3rd step: enter TCO inputs on "Inputs" sheet

Total Cost of Ownership Inputs

Light-Duty Vehicle Information				
Years of Planned Ownership	years	15		
Heavy-Duty Vehicle Information				
Years of Planned Ownership	years	15		
Infrastructure Information				
Years of Planned Ownership	years	15		
Financial Assumptions				
		Vehicles	Infrastructure	
Loan	yes/no	No	No	
Loan Term	years	5	5	
Interest Rate	%	3.37%	3.37%	
Percent Down Payment	%	0.00%	0.00%	
Discount Factor	%	0.83%		

 4th step: adjust fuel production & energy/emission assumptions on "Inputs" sheet

Biodiesel Feedstock Source	1 - Soy	1			
	2 - Canola				
	3 - Corn				
	4 - Tallow				
Ethanol Feedstock Source	1 - Corn	1			
	2 - Switchgrass				
	3 - Sugarcane				
	4 - Grain Sorghum				
CNG Feedstock Source	1 - North American NG	1			
	2 - Landfill Gas				
	3 - AD Gas of Animal Waste				
	4 - AD Gas of Wastewater Sludge				
	5 - AD Gas of MSW				
North American NG Feedsto	ock Source	Conventional	Shale		
		66%	34%		
LPG Feedstock Source		NG	Petroleum		
		69%	31%		
Source of Electricity for PHE	Vs, EVs, and FCVs (Electrolysis)	7			
	1 - Average U.S. Mix				
	2 to 11 - EIA Region Mix (see map)				
	<u>12 - User Defined (go to 'Backgrour</u>	nd Data' sheet)			
G.H2 Production Process	1 - Refueling Station SMR (On-site)	1			
	2 - Central Plant SMR (Off-site)				
	3 - Refueling Station Electrolysis (On-site)				

Petroleum Use, GHGs & Air Pollutant Options

Petroleum Use, GHGs & Air Pollutant Calculat	1			
1 - WTW Petroleum Use and GHGs & Tailpipe Air Pollutants				
2 - WTW Petroleum Use, GHGs, and Air Pollutants				
3 - WTW & Vehicle Production* Petroleum Use, GHGs, Air Pollutants (*LDVs only)				
Diesel In-Use Emissions Multiplier	yes/no	No		
Low NOx Engines - CNG and LNG HDVs	yes/no	Yes		

Note: Several fuels are not shown for clarity in this presentation

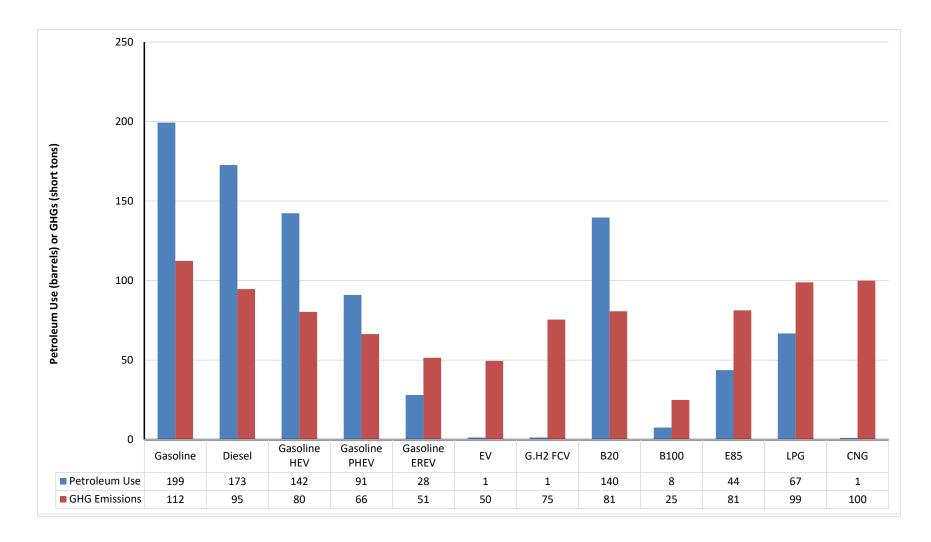
- 5th step: if examining PHEV or EREV, enter additional data on "Payback" sheet
 - CD "EV mode" fuel consumption & range
 - Charges per day & days driven per week
 - Other secondary assumptions are on this sheet as well

			Gasoline	Gasoline	Gasoline		
	Gasoline	Diesel	HEV	PHEV	EREV	EV	G.H2 FCV
Light-Duty Vehicle Inputs							
Vehicle Type	Passenger Car						
Number of LDVs	25	25	25	25	25	25	25
Annual Mileage	11,000	11,000	11,000	11,000	11,000	11,000	11,000
Fuel Economy (MPGGE)	28.8	34.6	40.3	42.9	41.2	95.0	57.3
CD Electricity Use (kWh/100mi)				23.0	<mark>31.4</mark>	34.6	
CD Electricity Use (GGE/100mi)				0.7	1.0		
CD Gasoline Use (GGE/100mi)				0.7	0.0		
PHEV CD Range (miles)				19.6	<mark>34.0</mark>		
Charges/day				1.0	1.0		
Days driven/week				5	5		
Share of CD miles				46%	81%		
Share of Alternative Fuel Use in Dual-Fuel or PHE	/ (Energy %)			17%	62%		
DEF Use (% of fuel consumption)	0%	2%	0%	0%	0%	0%	0%
Purchase Price (\$/vehicle)	\$20,000	\$22,500	\$23,000	\$32,500	\$34,000	\$30,000	\$58,500
Incentive (\$/vehicle)	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Maintenance & Repair (\$/mile)	\$0.142	\$0.192	\$0.137	\$0.135	\$0.135	\$0.125	\$0.125

Note: Several fuels are not shown for clarity in this presentation

- 6th step: if examining fuel price sensitivity, enter additional data on "Payback" sheet
 - Enter high and low fuel prices for either public or private station
 - Can either enter values or % relative to default price
 - Do not have to enter multiple times for vehicles using same fuel

	Gasoline	Diesel	Gasoline HEV	Gasoline PHEV	Gasoline EREV	EV	G.H2 FCV
Fuel Price Sensitivity	Gasonne	Diesei		FILV		LV	0.112100
Public Fuel Price Sensitivity Case	No						
High Fuel Price (% increase vs default)	17%	19%	17%	17%	17%	0%	0%
High Primary Fuel Price (\$/GGE)	\$3.51	\$3.13	\$3.51	\$3.51	\$3.51	\$5.34	\$20.29
High Secondary Fuel Price (\$/GGE)				\$5.34	\$5.34		
Low Primary Fuel Price (% decrease vs default)	17%	19%	17%	17%	17%	0%	0%
Low Primary Fuel Price (\$/GGE)	\$2.51	\$2.13	\$2.51	\$2.51	\$2.51	\$5.34	\$20.29
Low Secondary Fuel Price (\$/GGE)				\$5.34	\$5.34		
Private Fuel Price Sensitivity Case	No						
High Fuel Price (% increase vs default)	18%	19%	17%	17%	17%	0%	0%
High Primary Fuel Price (\$/GGE)	\$3.34	\$3.13	\$3.31	\$3.31	\$3.31	\$5.34	\$6.99
High Secondary Fuel Price (\$/GGE)				\$5.34	\$5.34		
Low Primary Fuel Price (% decrease vs default)	18%	19%	17%	17%	17%	0%	0%
Low Primary Fuel Price (\$/GGE)	\$2.34	\$2.13	\$2.37	\$2.37	\$2.37	\$5.34	\$6.99
Low Secondary Fuel Price (\$/GGE)				\$5.34	\$5.34		


- 7th step: if examining infrastructure costs, enter additional data on "Payback" sheet
 - Enter station type (via drop down), number of stations, and station & O&M costs

	Gasoline	Diesel	Gasoline HEV	Gasoline PHEV	Gasoline EREV	EV
Infrastructure Inputs						
				Level 2 -	Level 2 - Parking	Level 2 - Parking
Station/EVSE Type	New Private	New Private	New Private	Parking Garage	Garage	Garage
Number of stations/EVSEs	0	0	0	13	13	13
Total Refueling Station/EVSE Cost	\$0	\$0	\$0	\$40,556	\$40,556	\$40,556
Total Incentive	\$0	\$0	\$0	\$0	\$0	\$0
Maintenance Depot Cost	\$0	\$0	\$0	\$0	\$0	\$0
Annual Private Station/EVSE Operation & Mainter	\$0	\$0	\$0	\$9,100	\$9,100	\$9,100
Default Refueling Station/EVSE Cost	\$0	\$0	\$0	\$40,556	\$40,556	\$40,556
Default Annual Private Station/EVSE O&M Costs (\$0	\$0	\$0	\$9,100	\$9,100	\$9,100
Annual Private Fueling Labor & Misc. Costs (\$/yr)	\$0	\$0	\$0	\$0	\$0	\$0

Note: Several fuels are not shown for clarity in this presentation

• View results on "Payback Outputs" sheet

Session #13: Sustainable Fleet Analytical Tools & Information for Fleet Decisions

November 10, 2020

