

About Automobility Enterprises

North American Joint Venture

PEM Global Network



About Automobility Enterprises (AE)

e-mobility solutions provider focused on the development, manufacturing, and support of innovative products for sustainable mobility.

Supporting customers/brands from concept to series production and assembly, in the Detroit/Windsor area and through our shareholder facilities at the California Mobility Center and Aachen Germany.

Leveraging a proven model and technology partnerships and innovation from around the globe focused on fuel cells, battery technology, electric motors and propulsion technologies, AE offers turn-key EV services and solutions across several applications and markets, with a focus on commercial vehicles.

Our Services

Commercial EV Sales

- Network of customers in the areas of
 - + Last mile delivery
 - + Utility fleets
 - + Transit fleets
 - + Government fleets
 - + Mining and agricultural
- Can fast track market entry for foreign OEM's
- Engaged with multiple Government Pilot programs and Incentives

Volume series production

Scalable and innovative contract production for retrofits, SKD or BOM structure full manufacturing

Extract from our network

untelcom

go/for

Ottawa

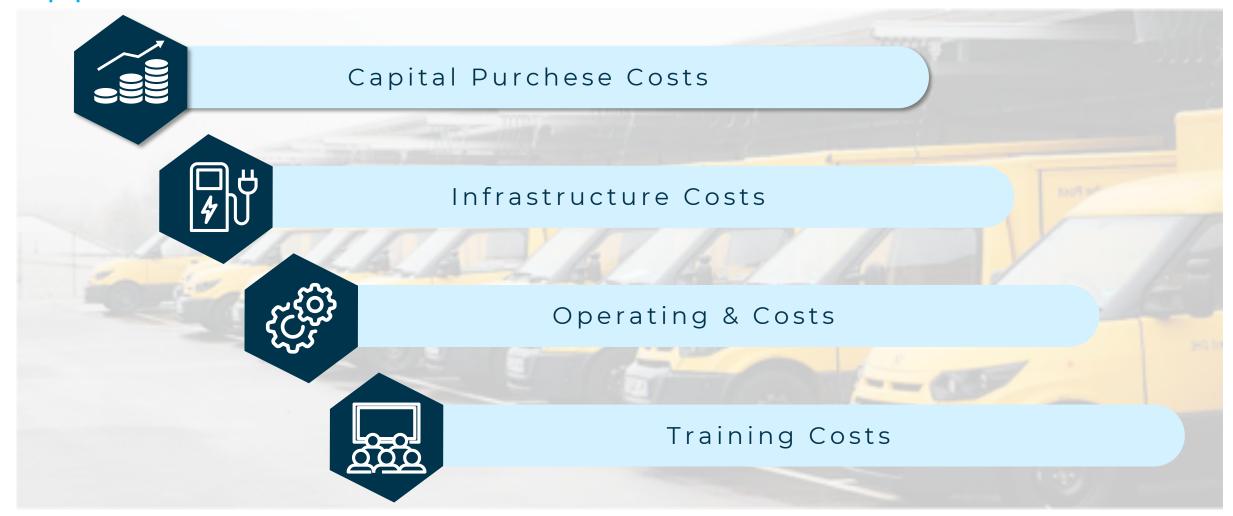
amazon

FedEx.

- Flexible production environment with ability to quickly change from manufacturing one type of vehicle to another
- + Agile factory that can scale up to meet your needs

Vehicle Support and Maintenance

- Reliable maintenance solutions to support your electric vehicles
- Our professionally trained and certified EV mobile technicians can provide remote or direct service on-site, or at AE facilities



Total Cost of Ownership Components: Comprehensive Approach

Financial Factors Impacting TCO

Financial Incentives & Rebates

Depreciation Rates & Residual Value (leases)

Maintenance Costs (including battery replacement)

Electricity & Charging Costs

European Case Study Using 2 Last Mile Delivery Trucks: Comparing Gas vs Electric*

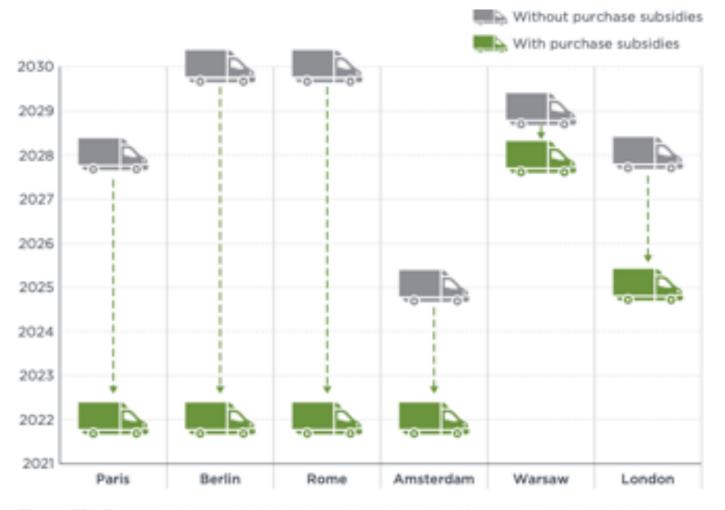


Figure ES1. The year battery-electric trucks achieve total cost of ownership parity relative to diesel trucks with and without purchase subsidies.

Critical Data in Determining TCO Parity*

Table 2. Battery-electric truck retail price breakdown in 2022, 2025, and 2030.

Cost component	2022	2025	2030
Battery	€9,272	€6,840	€3,952
Powertrain	€3,405	€3,081	€2,730
Chassis and assembly	€23,995	€23,995	€23,995
Indirect costs	€14,962	€12,074	€8,283
Total retail price	€51,634	€45,990	€38,960

Vehicle Price

Table 11. Impact of proper battery sizing on the total cost of ownership parity year between battery electric and diesel trucks without purchase incentives.

City	Paris	Berlin	Rome	Amsterdam	Warsaw	London
TCO parity year with current battery size (76 kWh)	2030	2030	2030	2028	2030	2030
TCO parity year with proper battery size (35 kWh)	2028	2030	2030	2025	2028	2028

Battery Sizing

Table 6. City-specific charging costs for the depot defined in this use case.

City	Power prices incl. margin ¢/kWh	Network prices €/kWh	Taxes and levies €/kWh	VAT €/kWh	Charging costs ¢/kWh	Charging costs without VAT €/kWh
Berlin	6.5	1.7	9.6	3.4	21.2	17.8
Amsterdam	6.7	1.6	2.4	2.2	12.9	10.7
Warsaw	7.1	0.6	0.3	0.4	8.4	8
Rome	5	0.8	9.5	3.5	19.2	15.7
Paris	6.9	2.8	3.2	2.6	15.5	12.9
London	8.4	7.3	1.3	3.4	20.3	16.9

traveled (AVKT).

Table 13. Battery electric and diesel trucks' TCO parity year at different annual vehicle kilometers

AVKT (km)	Berlin	Paris	Rome	Amsterdam	Warsaw	London
15,000	2030	2028	2030	2025	2028	2028
20,000	2029	2027	2029	2024	2027	2027
25,000	2028	2025	2028	2023	2026	2025
30,000	2028	2025	2028	2022	2025	2024
35,000	2027	2024	2027	2022	2025	2024
40,000	2027	2024	2027	2022	2024	2024
45,000	2027	2024	2027	2022	2024	2023
50,000	2026	2023	2026	2022	2024	2023
55,000	2026	2023	2026	2022	2023	2023
60,000	2026	2023	2025	2022	2023	2022

Annual Mileage Driven

Table 9. Summary of purchase incentives offered for battery-electric trucks in the cities of interest in this study.

City	Purchase incentives
Berlin *)	80% of price difference to diesel truck capped at €100,000
Paris 10	40% of the vehicle acquisition cost capped at €50,000
Rome o	€14,000 fixed premium
Amsterdam ®	20% of the vehicle acquisition cost capped at €40,000
Warsaw *)	30% of price difference to diesel truck capped at €33,333
London ⁶	€7,000 fixed premium

Subsidy & Rebates

Conclusions

- Last Mile EV Delivery Truck economical today in multiple European cities with purchase subsidy
- Battery Sizing based on "real" duty cycle need Key to Reducing Capital Costs

Smart Charging and Charging Costs Key to reducing overall costs

 Time required to reach TCO parity highly sensitive to diesel/gas costs and total annual mileage

